Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(4): 809-818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389167

RESUMO

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.


Assuntos
Parede Celular/enzimologia , Microbiologia Industrial/métodos , Lipase/química , Óleo de Soja/química , Eliminação de Resíduos Líquidos/métodos , Yarrowia/enzimologia , Concentração de Íons de Hidrogênio , Ácido Oleico/química , Peptonas/química , Glycine max , Especificidade por Substrato , Temperatura , Fatores de Tempo , Ultrassom
2.
Appl Biochem Biotechnol ; 146(1-3): 173-87, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18421597

RESUMO

An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 degrees C, as half-lives (t (1/2)) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.


Assuntos
Butiratos/química , Cocos/química , Lipase/química , Extratos Vegetais/química , Adsorção , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Proteínas Fúngicas , Especificidade por Substrato
3.
Appl Biochem Biotechnol ; 137-140(1-12): 67-80, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18478377

RESUMO

The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2 h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60 degrees C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5 degrees C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60 degrees C stability was reduced for both CALB-7 and CALB-10.


Assuntos
Cocos/química , Lipase/química , Ativação Enzimática , Estabilidade Enzimática , Enzimas Imobilizadas/química , Proteínas Fúngicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...