Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 323, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730192

RESUMO

Bilayer graphene (Bl-Gr) and sulphur-doped graphene (S-Gr) have been integrated with LiTaO3 surface acustic wave (SAW) sensors to enhance the performance of NO2 detection at room temperature. The sensitivity of the Bl-Gr SAW sensors toward NO2, measured at room temperature, was 0.29º/ppm, with a limit of detection of 0.068 ppm. The S-Gr SAW sensors showed 0.19º/ppm sensitivity and a limit of detection of 0.140 ppm. The origin of these high sensitivities was attributed to the mass loading and elastic effects of the graphene-based sensing materials, with surface changes caused by the absorption of the NO2 molecules on the sensing films. Although there are no significant differences regarding the sensitivity and detection limit of the two types of sensors, the measurements in the presence of interferent gases and various humidity conditions outlined much better selectivity and sensing performances towards NO2 gas for the Bl-Gr SAW sensors.

2.
Gels ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391443

RESUMO

This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N'-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method.

3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069261

RESUMO

The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In this study, two composites ZnO/Au (1% wt.) and ZnO/Ag (1% wt.) were synthesized by simple aqueous solution methods. The structure and morphology of the r nanocomposites were analyzed by structural and optical characterization methods. The formation of AuNPs and AgNPs in these experiments was also discussed. The antimicrobial properties of ZnO, ZnO/Au, and ZnO/Ag nanomaterials were investigated against Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). The results showed an increase of 80% in the antimicrobial activity of ZnO/Au against Pseudomonas aeruginosa compared with 30% in the case of ZnO/Ag. Similarly, in the case of the S. aureus strain tests, ZnO/Au increased the antimicrobial activity by 55% and ZnO/Ag by 33%. The photocatalytic tests indicated an improvement in the photocatalytic degradation of methylene blue (MB) under UV irradiation using ZnO/Au and ZnO/Ag nanocomposites compared to bare ZnO. The photocatalytic degradation efficiency of ZnO after 60 min of UV irradiation was ∼83%, while the addition of AuNPs enhanced the degradation rate to ∼95% (ZP2), and AgNP presence enhanced the efficiency to ∼98%. The introduction of noble metallic nanoparticles into the ZnO matrix proved to be an effective strategy to increase their antimicrobial activity against P. aeruginosa and S. aureus, and their photocatalytic activity was evaluated through the degradation of MB dye. Comparing the enhancing effects of Au and Ag, it was found that ZnO/Au was a better antimicrobial agent while ZnO/Ag was a more effective photocatalyst under UV irradiation.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Staphylococcus aureus , Ouro/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Azul de Metileno/química
4.
Pharmaceutics ; 15(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140037

RESUMO

Complicated wounds often require specialized medical treatments, and hydrogels have emerged as a popular choice for wound dressings in such cases due to their unique properties and the ability to incorporate and release therapeutic agents. Our focus was to develop and characterize a new optimized formula for biohybrid hydrogel membranes, which combine natural and synthetic polymers, bioactive natural compounds, like collagen and hyaluronic acid, and pharmacologically active substances (doxycycline or npAg). Dynamic (oscillatory) rheometry confirmed the strong gel-like properties of the obtained hydrogel membranes. Samples containing low-dose DOXY showed a swelling index of 285.68 ± 6.99%, a degradation rate of 71.6 ± 0.91% at 20 h, and achieved a cumulative drug release of approximately 90% at pH 7.4 and 80% at pH 8.3 within 12 h. The addition of npAg influenced the physical properties of the hydrogel membranes. Furthermore, the samples containing DOXY demonstrated exceptional antimicrobial efficacy against seven selected bacterial strains commonly associated with wound infections and complications. Biocompatibility assessments revealed that the samples exhibited over 80% cell viability. However, the addition of smaller-sized nanoparticles led to decreased cellular viability. The obtained biohybrid hydrogel membranes show favorable properties that render them suitable for application as wound dressings.

5.
Environ Sci Process Impacts ; 25(12): 2057-2066, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37870161

RESUMO

Glyphosate (GLY), a widely utilized pesticide, poses a significant threat to human health even at minute concentrations. In this study, we propose an innovative electrochemical sensor for the indirect detection of GLY in surface water samples. The sensor incorporates a nanohybrid material composed of multi-layer graphene decorated with gold nanoparticles (AuNPs), synthesized in a single-step electrochemical process. To ensure portability and on-site measurements, the sensor is developed on a screen-printed electrode, chosen for its integration and miniaturization capabilities. The proposed sensor demonstrates remarkable sensitivity and selectivity for GLY detection in surface water samples, with an exceptional limit of detection (LOD) of 0.03 parts per billion (ppb) in both buffer and surface water matrices. Moreover, it exhibits a remarkably high sensitivity of 0.15 µA ppb-1. This electrochemical sensor offers a promising approach for accurate GLY monitoring, addressing the urgent need for reliable pesticide detection in environmental samples. The proposed sensor showed high selectivity towards GLY, when analysed in the presence of other pesticides such as phosmet, chlorpyrifos and glufosinate-ammonium. The recovery percentages of GLY from spiked surface water samples were between 93.8 and 98.9%. The study's broader implications extend to revolutionizing the way environmental chemistry addresses pesticide contamination, water quality assessment, and sustainable management of environmental pollutants. By pushing the boundaries of detection capabilities and offering practical solutions, this research contributes to the advancement of knowledge and practices that are essential for preserving and protecting our environment.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Praguicidas , Humanos , Ouro/análise , Praguicidas/análise , Eletrodos , Monitoramento Ambiental , Técnicas Eletroquímicas
6.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571071

RESUMO

In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.

7.
Gels ; 9(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37367146

RESUMO

Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients' quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents.

8.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985858

RESUMO

The adhesive bonds that ensure the appropriate mechanical properties for metal joining imply the surface chemical and wetting modification characteristics of the substrates. In this work, matrix-assisted pulsed laser evaporation (MAPLE) was used for the surface modification of Al via the deposition of two chemical compounds, polyvinyl alcohol (PVA) and triethanolamine (TEA), from frozen aqueous solutions. The deposition of the TEA and PVA layers was evidenced by FT-IR, SEM, and AFM analysis. The contact angle measurements evidenced the change in the hydrophilicity of the surface and surface free energies. The performance of the commercial silyl-based polymer adhesive Bison Max Repair Extreme Adhesive® was evaluated by tensile strength measurements. This method led to a change in tensile strength of 54.22% in the case of Al-TEA and 36.34% for Al-PVA compared with the control. This study gives preliminary insights into using MAPLE, for the first time in adhesive applications, as a pretreatment method for Al plates for adhesive bonding reinforcement.

9.
Gels ; 9(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36661817

RESUMO

In vitro tumor spheroids have proven to be useful 3D tumor culture models for drug testing, and determining the molecular mechanism of tumor progression and cellular interactions. Therefore, there is a continuous search for their industrial scalability and routine preparation. Considering that hydrogels are promising systems that can favor the formation of tumor spheroids, our study aimed to investigate and develop less expensive and easy-to-use amorphous and crosslinked hydrogels, based on natural compounds such as sodium alginate (NaAlg), aloe vera (AV) gel powder, and chitosan (CS) for tumor spheroid formation. The ability of the developed hydrogels to be a potential spheroid-forming system was evaluated using MDA-MB-231 and U87MG cancer cells. Spheroid abilities were influenced by pH, viscosity, and crosslinking of the hydrogel. Addition of either AV or chitosan to sodium alginate increased the viscosity at pH 5, resulting in amorphous hydrogels with a strong gel texture, as shown by rheologic analysis. Only the chitosan-based gel allowed formation of spheroids at pH 5. Among the variants of AV-based amorphous hydrogels tested, only hydrogels at pH 12 and with low viscosity promoted the formation of spheroids. The crosslinked NaAlg/AV, NaAlg/AV/glucose, and NaAlg/CS hydrogel variants favored more efficient spheroid formation. Additional studies would be needed to use AV in other physical forms and other formulations of hydrogels, as the current study is an initiation, in evaluating the potential use of AV gel in tumor spheroid formation systems.

10.
Heliyon ; 9(12): e23097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205075

RESUMO

The aim of this study involved the synthesis and characterization of polyurethane (PUR) foams obtained from poly(ethylene terephthalate) (PET) depolymerization products and two types of filling agents, namely fly ash and glass waste. The depolymerized PET-based products were obtained by zinc acetate-catalyzed glycolysis process in diethylene glycol (DEG) as a co-reactant. The resulting glycolysis products were contacted with methylene diphenyl diisocyanate, castor oil, and reinforcing agents. The resulting PUR specimens were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), EDX mapping, mechanical tests, and thermal analysis. The analysis confirmed that the best mechanical performances were registered by the specimens with the lowest concentration of filling agent, while the highest thermal resistance was achieved by the PUR foams with the highest concentration of reinforcing agent.

11.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558245

RESUMO

The development of highly efficient sunlight-driven photocatalysts has triggered increased attention due to their merit in effluent treatment through a chemically green approach. To this end, we present herein the synthesis and characterization of the TiO2/3D-GF/Ni hybrid emphasizing the main structural and morphological properties and the photodegradation process of a highly resistant aromatic azo dye, methyl orange, under both UV light and simulated sunlight. Three-dimensional (3D) graphene was grown by the thermal CVD method on the nickel foam and subsequently coated with thin films of anatase employing the sol-gel method. Thereafter, it was gratifyingly demonstrated that the hybrid nanomaterial, TiO2/3D-GF-Ni, was able to bring about more than 90% decolorization of methyl orange dye after 30 min under simulated sunlight irradiance. Moreover, the efficiency of the methyl orange decolorization was 99.5% after three successive cycles. This high-performance photocatalyst which can effectively decolorize methyl orange will most likely make a great contribution to reducing environmental pollution by employing renewable solar energy.

12.
Nanomaterials (Basel) ; 12(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364608

RESUMO

Annually, antimicrobial-resistant infections-related mortality worldwide accelerates due to the increased use of antibiotics during the coronavirus pandemic and the antimicrobial resistance, which grows exponentially, and disproportionately to the current rate of development of new antibiotics. Nanoparticles can be an alternative to the current therapeutic approach against multi-drug resistance microorganisms caused infections. The motivation behind this work was to find a superior antibacterial nanomaterial, which can be efficient, biocompatible, and stable in time. This study evaluated the antibacterial activity of ZnO-based nanomaterials with different morphologies, synthesized through the solvothermal method and further modified with Au nanoparticles through wet chemical reduction. The structure, crystallinity, and morphology of ZnO and ZnO/Au nanomaterials have been investigated with XRD, SEM, TEM, DLS, and FTIR spectroscopy. The antibacterial effect of unmodified ZnO and ZnO/Au nanomaterials against Escherichia coli and Staphylococcus aureus was investigated through disc diffusion and tetrazolium/formazan (TTC) assays. The results showed that the proposed nanomaterials exhibited significant antibacterial effects on the Gram-positive and Gram-negative bacteria. Furthermore, ZnO nanorods with diameters smaller than 50 nm showed better antibacterial activity than ZnO nanorods with larger dimensions. The antibacterial efficiency against Escherichia coli and Staphylococcus aureus improved considerably by adding 0.2% (w/w) Au to ZnO nanorods. The results indicated the new materials' potential for antibacterial applications.

13.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889642

RESUMO

Graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs)-polypropylene (PP) composite materials for electromagnetic interference (EMI) shielding applications were fabricated as 1 mm thick panels and their properties were studied. Structural and morphologic characterization indicated that the obtained composite materials are not simple physical mixtures of these components but new materials with particular properties, the filler concentration and nature affecting the nanomaterials' structure and their conductivity. In the case of GNPs, their characteristics have a dramatic effect of their functionality, since they can lead to composites with lower conductivity and less effective EMI shielding. Regarding CNTs-PP composite panels, these were found to exhibit excellent EMI attenuation of more than 40 dB, for 10% CNTs concentration. The development of PP-based composite materials with added value and particular functionality (i.e., electrical conductivity and EMI shielding) is highly significant since PP is one of the most used polymers, the best for injection molding, and virtually infinitely recyclable.

14.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36678545

RESUMO

Green chemistry is a pharmaceutical industry tool, which, when implemented correctly, can lead to a minimization in resource consumption and waste. An aqueous extract of Salix alba L. was employed for the efficient and rapid synthesis of silver/gold particle nanostructures via an inexpensive, nontoxic and eco-friendly procedure. The nanoparticles were physicochemically characterized using ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), with the best stability of up to one year in the solution obtained for silver nanoparticles without any chemical additives. A comparison of the antimicrobial effect of silver/gold nanoparticles and their formulations (hydrogels, ointments, aqueous solutions) showed that both metallic nanoparticles have antibacterial and antibiofilm effects, with silver-based hydrogels having particularly high antibiofilm efficiency. The highest antibacterial and antibiofilm efficacies were obtained against Pseudomonas aeruginosa when using silver nanoparticle hydrogels, with antibiofilm efficacies of over 75% registered. The hydrogels incorporating green nanoparticles displayed a 200% increased bacterial efficiency when compared to the controls and their components. All silver nanoparticle formulations were ecologically obtained by "green synthesis" and were shown to have an antimicrobial effect or potential as keratinocyte-acting pharmaceutical substances for ameliorating infectious psoriasis wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...