Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Nutr ; 11: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551317

RESUMO

BACKGROUND: Marine long-chain polyunsaturated fatty acids are susceptible to oxidation, generating a range of different oxidation products with suggested negative health effects. The aim of the present study was to utilize sensitive high-throughput transcriptome analyses to investigate potential unfavorable effects of oxidized fish oil (PV: 18 meq/kg; AV: 9) compared to high-quality fish oil (PV: 4 meq/kg; AV: 3). METHODS: In a double-blinded randomized controlled study for seven weeks, 35 healthy subjects were assigned to 8 g of either oxidized fish oil or high quality fish oil. The daily dose of EPA+DHA was 1.6 g. Peripheral blood mononuclear cells were isolated at baseline and after 7 weeks and transcriptome analyses were performed with the illuminaHT-12 v4 Expression BeadChip. RESULTS: No gene transcripts, biological processes, pathway or network were significantly changed in the oxidized fish oil group compared to the fish oil group. Furthermore, gene sets related to oxidative stress and cardiovascular disease were not differently regulated between the groups. Within group analyses revealed a more prominent effect after intake of high quality fish oil as 11 gene transcripts were significantly (FDR < 0.1) changed from baseline versus three within the oxidized fish oil group. CONCLUSION: The suggested concern linking lipid oxidation products to short-term unfavorable health effects may therefore not be evident at a molecular level in this explorative study. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01034423.

2.
J Nutr Sci ; 5: e43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28620470

RESUMO

Regular consumption of long-chain n-3 fatty acids (LC n-3 FA) reduces postprandial triacylglycerolaemia. Functional foods and supplements are alternative sources of LC n-3 FA; however, emulsification technologies, food matrices and altered lipid oxidation levels affect their bioavailability. Moreover, which functional foods are optimal LC n-3 FA carriers is unknown. The aim of the study was to determine the bioavailability of LC n-3 FA and the postprandial TAG response after the intake of oxidised or non-oxidised cod liver oil and after the intake of emulsified or non-emulsified LC n-3 FA using novel functional food items as LC n-3 FA carriers in a randomised cross-over acute study. A total of twenty-four healthy subjects completed the study in which subjects consumed one of four different test meals containing 1·5 g LC n-3 FA, or a control meal with no LC n-3 FA. Postprandial TAG-rich lipoproteins were isolated and their fatty acid composition was measured. The LC n-3 FA from emulsified foods were more rapidly incorporated into TAG-rich lipoproteins compared with non-emulsified foods. The incorporation of LC n-3 FA was similar for oils emulsified in yogurt or juice and was unaffected by the oxidative status of the oil. Postprandial TAG levels did not differ among the various test meals. In conclusion, emulsification increases the bioavailability of LC n-3 FA through a more rapid incorporation into TAG-rich lipoproteins, and juice and yogurt are equally suited as LC n-3 FA carriers. The acute intake of oxidised cod liver oil does not influence the incorporation of LC n-3 FA into TAG-rich lipoproteins.

3.
PLoS One ; 7(8): e42550, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952598

RESUMO

BACKGROUND: While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects. METHODOLOGY/PRINCIPAL FINDINGS: In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping. CONCLUSIONS/SIGNIFICANCE: In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated. TRIAL REGISTRATION: ClinicalTrials.gov NCT01034423.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Insaturados/sangue , Óleos de Peixe/farmacologia , Lipídeos/sangue , Fosfolipídeos/sangue , Triglicerídeos/sangue , Adolescente , Adulto , Índice de Massa Corporal , Cromatografia Líquida/métodos , Método Duplo-Cego , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Óleos de Plantas/farmacologia , Análise de Regressão , Projetos de Pesquisa , Óleo de Girassol
4.
Br J Nutr ; 108(2): 315-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22136711

RESUMO

Intake of fish oil reduces the risk of CHD and CHD deaths. Marine n-3 fatty acids (FA) are susceptible to oxidation, but to our knowledge, the health effects of intake of oxidised fish oil have not previously been investigated in human subjects. The aim of the present study was to investigate markers of oxidative stress, lipid peroxidation and inflammation, and the level of plasma n-3 FA after intake of oxidised fish oil. In a double-blinded randomised controlled study, healthy subjects (aged 18-50 years, n 54) were assigned into one of three groups receiving capsules containing either 8 g/d of fish oil (1.6 g/d EPA+DHA; n 17), 8 g/d of oxidised fish oil (1.6 g/d EPA+DHA; n 18) or 8 g/d of high-oleic sunflower oil (n 19). Fasting blood and morning spot urine samples were collected at weeks 0, 3 and 7. No significant changes between the different groups were observed with regard to urinary 8-iso-PGF2α; plasma levels of 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and α-tocopherol; serum high sensitive C-reactive protein; or activity of antioxidant enzymes in erythrocytes. A significant increase in plasma level of EPA+DHA was observed in both fish oil groups, but no significant difference was observed between the fish oil groups. No changes in a variety of in vivo markers of oxidative stress, lipid peroxidation or inflammation were observed after daily intake of oxidised fish oil for 3 or 7 weeks, indicating that intake of oxidised fish oil may not have unfavourable short-term effects in healthy human subjects.


Assuntos
Óleo de Fígado de Bacalhau/efeitos adversos , Óleo de Fígado de Bacalhau/química , Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Estresse Oxidativo , Adulto , Aldeídos/sangue , Biomarcadores/sangue , Biomarcadores/urina , Proteína C-Reativa/análise , Dinoprosta/análogos & derivados , Dinoprosta/urina , Método Duplo-Cego , Eritrócitos/enzimologia , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Feminino , Humanos , Peroxidação de Lipídeos , Masculino , Noruega , Oxirredução , Oxirredutases/sangue , Pacientes Desistentes do Tratamento , Adulto Jovem , alfa-Tocoferol/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...