Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Polym Au ; 4(1): 56-65, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38371734

RESUMO

Due to their unique rheological and mechanical properties, bottlebrush polymers are inimitable components of biological and synthetic systems such as cartilage and ultrasoft elastomers. However, while their rheological properties can be precisely controlled through their macromolecular structures, the current chemical spectrum available is limited to a handful of synthetic polymers with aliphatic carbon backbones. Herein we design and synthesize a series of inorganic bottlebrush polymers based on a unique combination of polydimethylsiloxane (PDMS) and polyphosphazene (PPz) chemistry. This non-carbon-based platform allows for simple variation of the significant architectural dimensions of bottlebrush-polymer-based elastomers. Grafting PDMS to PPz and vice versa also allows us to further exploit the unique properties of these polymers combined in a single material. These novel hybrid bottlebrush polymers were cured to give supersoft, solvent-free elastomers. We systematically studied the effect of architectural parameters and chemical functionality on their rheological properties. Besides forming supersoft elastomers, the energy dissipation characteristics of the elastomers were observed to be considerably higher than those for PDMS-based elastomers. Hence this work introduces a robust synthetic platform for solvent-free supersoft elastomers with potential applications as biomimetic damping materials.

2.
J Funct Biomater ; 15(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391893

RESUMO

"Hot spot" 19F magnetic resonance imaging (MRI) has garnered significant attention recently for its ability to image various disease markers quantitatively. Unlike conventional gadolinium-based MRI contrast agents, which rely on proton signal modulation, 19F-MRI's direct detection has a unique advantage in vivo, as the human body exhibits a negligible background 19F-signal. However, existing perfluorocarbon (PFC) or PFC-based contrast materials suffer from several limitations, including low longitudinal relaxation rates and relatively low imaging efficiency. Hence, we designed a macromolecular contrast agent featuring a high number of magnetically equivalent 19F-nuclei in a single macromolecule, adequate fluorine nucleus mobility, and excellent water solubility. This design utilizes superfluorinated polyphosphazene (PPz) polymers as the 19F-source; these are modified with sodium mercaptoethanesulfonate (MESNa) to achieve water solubility exceeding 360 mg/mL, which is a similar solubility to that of sodium chloride. We observed substantial signal enhancement in MRI with these novel macromolecular carriers compared to non-enhanced surroundings and aqueous trifluoroacetic acid (TFA) used as a positive control. In conclusion, these novel water-soluble macromolecular carriers represent a promising platform for future MRI contrast agents.

3.
Glob Chall ; 7(9): 2300062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37745829

RESUMO

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

4.
ACS Macro Lett ; 12(6): 673-678, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37158040

RESUMO

Photochemical additive manufacturing technologies can produce complex geometries in short production times and thus have considerable potential as a tool to fabricate medical devices such as individualized patient-specific implants, prosthetics and tissue engineering scaffolds. However, most photopolymer resins degrade only slowly under the mild conditions required for many biomedical applications. Herein we report a novel platform consisting of amino acid-based polyphosphorodiamidate (APdA) monomers with hydrolytically cleavable bonds. The substituent on the α-amino acid can be used as a handle for facile control of hydrolysis rates of the monomers into their endogenous components, namely phosphate and the corresponding amino acid. Furthermore, monomer hydrolysis is considerably accelerated at lower pH values. The monomers underwent thiol-yne photopolymerization and could be 3D structured via multiphoton lithography. Copolymerization with commonly used hydrophobic thiols demonstrates not only their ability to regulate the ambient degradation rate of thiol-yne polyester photopolymer resins, but also desirable surface erosion behavior. Such degradation profiles, in the appropriate time frames, in suitably mild conditions, combined with their low cytotoxicity and 3D printability, render these novel photomonomers of significant interest for a wide range of biomaterial applications.


Assuntos
Aminoácidos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis , Engenharia Tecidual , Poliésteres , Materiais Dentários , Compostos de Sulfidrila/química
5.
Small ; 19(22): e2300767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843221

RESUMO

Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.


Assuntos
Polímeros , Água , Distribuição Tecidual , Polímeros/química , Substâncias Macromoleculares , Água/química , Peptídeos
6.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079248

RESUMO

The natural occurrence of precious opals, consisting of highly organized silica particles, has prompted interest in the synthesis and formation of these structures. Previous research has shown that a highly organized photonic crystal (PhC) array is only possible when it is based on a low polydispersity index (PDI) sample of particles. In this study, a solvent-only variation method is used to synthesize different sizes of silica particles (SiPs) by following the traditional sol-gel Stöber approach. The controlled rate of the addition of the reagents promoted the homogeneity of the nucleation and growth of the spherical silica particles, which in turn yielded a low PDI. The opalescent PhC were obtained via self-assembly of these particles using a solvent evaporation method. Analysis of the spatial statistics, using Voronoi tessellations, pair correlation functions, and bond order analysis showed that the successfully formed arrays showed a high degree of quasi-hexagonal (hexatic) organization, with both global and local order. Highly organized PhC show potential for developing future materials with tunable structural reflective properties, such as solar cells, sensing materials, and coatings, among others.

7.
J Polym Sci (2020) ; 60(13): 2000-2007, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915665

RESUMO

The control of chain-ends is fundamental in modern macromolecular chemistry for directed one-to-one bioconjugation and the synthesis of advanced architectures such as block copolymers or bottlebrush polymers and the preparation of advanced soft materials. Polyphosphazenes are of growing importance as elastomers, biodegradable materials and in biomedical drug delivery due to their synthetic versatility. While controlled polymerization methods have been known for some time, controlling both chain-ends with high fidelity has proven difficult. We demonstrate a robust synthetic route to hetero and homo α,ω-chain-end functionalized polyphosphazenes via end-capping with easily accessible, functionalized triphenylphosphine-based phosphoranimines. A versatile thiol-ene "click"-reaction approach then allows for subsequent conversion of the end-capped polymers with various functional groups. Finally, we demonstrate the utility of this system to prepare gels based on homo α,ω-chain-end functionalized polyphosphazenes. This development will enhance their progress in various applications, particularly in soft materials and as degradable polymers.

8.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888230

RESUMO

Hollow microparticles are important materials, offering a larger surface area and lower density than their solid counterparts. Furthermore, their inner void space can be exploited for the encapsulation and release of guest species in a variety of applications. Herein, we present phosphazene-based silica hollow microparticles prepared via a surfactant-free sol-gel process through self-assembly of the alkoxysilyl-containing polymer in water-ethanol solution. Solely, a silane-derived polyphosphazene was used as the precursor for the microparticle formation, without additional classical silica sources. These novel hollow silica-based microparticles were prepared without surfactant, using a designed amphiphilic polyphosphazene for the particle formation made by two components, a hydrophilic unit consisting of 3-mercaptopropyl(trimethoxysilane), and a hydrophobic unit (dodecanethiol) attached to the double bonds from the poly(allylamine)phosphazene backbone via a thiol-ene photoreaction. Due to these two functionalities, a "vesicle"-like self-assembled structure was formed in the reaction medium, which could be then utilized for the microparticle preparation. The influence of NaOH during the synthesis was shown to affect the size and the wall thickness of the microparticles. This effect may enhance the possibilities to tailor such microparticles for drug delivery purposes or for future controlled release of other substances, such as drugs, fragrances, or anticorrosive pigments.

9.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808100

RESUMO

Strategies for production and use of nanomaterials have rapidly moved towards safety and sustainability. Beyond these requirements, the novel routes must prove to be able to preserve and even improve the performance of the resulting nanomaterials. Increasing demand of high-performance nanomaterials is mostly related to electronic components, solar energy harvesting devices, pharmaceutical industries, biosensors, and photocatalysis. Among nanomaterials, Zinc oxide (ZnO) is of special interest, mainly due to its environmental compatibility and vast myriad of possibilities related to the tuning and the enhancement of ZnO properties. Doping plays a crucial role in this scenario. In this work we report and discuss the properties of undoped ZnO as well as lanthanide (Eu, Tb, and La)-doped ZnO nanoparticles obtained by using whey, a by-product of milk processing, as a chelating agent, without using citrate nor any other chelators. The route showed to be very effective and feasible for the affordable large-scale production of both pristine and doped ZnO nanoparticles in powder form.

10.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458304

RESUMO

Epoxy varnishes are of high relevance to advanced steel laminates for the transformation of electric energy. Structure-property correlations of epoxy varnishes, coil coatings and electrical steel laminates are poorly described. Hence, the main objective of this paper was to develop, implement and evaluate well-defined waterborne model epoxy varnishes for electrical steel laminates, and to elucidate structure-property correlations. Adhesives with systematically varied equivalent epoxy weight (EEW) based on bisphenol-A-diglycidyl ether (DGEBA) were investigated and used to formulate waterborne varnishes. Crosslinking agent dicyandiamide (DICY) was added in an over-stoichiometric ratio. The waterborne model varnishes were prepared by shear emulsification at elevated temperatures. The model varnishes in the A-stage were applied to electrical steel using a doctoral blade. At a peak metal temperature of 210 °C, the coatings were cured to the partly crosslinked B-stage. Coated steel sheets were stacked, laminated and fully cured to C-stage at 180 °C for 2 h. For laminates with an epoxy adhesive layer in the C-stage, glass transition temperatures (TG) in the range of 81 to 102 °C were obtained by dynamic mechanical analysis in torsional mode. Within the investigated EEW range, a negative linear correlation of EEW and TG was ascertained. Presumably, higher EEW of the varnish is associated with a less densely crosslinked network in the fully cured state. Roll peel testing of laminates at ambient and elevated temperatures up to 140 °C confirmed the effect of EEW. However, no clear correlation of roll peel strength and glass transition temperature was discernible. In contrast, fatigue fracture mechanics investigations revealed that hydroxyl functionality and crosslinking density were affecting the crack growth resistance of laminates in a contrary manner. The energy-based fracture mechanics approach was much more sensitive than monotonic peel testing.

11.
Pharmaceutics ; 14(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057062

RESUMO

The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2-13.6 wt% of CPT and 0.3-2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140-200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80-100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 h in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 h. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 h. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.

12.
Polymers (Basel) ; 13(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771362

RESUMO

A water-soluble hydrolysate of silk fibroin (SF) (~30 kDa) was esterified with tocopherol, ergocalciferol, and testosterone to form SF aggregates for the controlled delivery of the anticancer drug camptothecin (CPT). Elemental analysis and 1H NMR spectroscopy showed a degree of substitution (DS) on SF of 0.4 to 3.8 mol %. Yields of 58 to 71% on vitamins- and testosterone-grafted SF conjugates were achieved. CPT was efficiently incorporated into the lipophilic core of SF aggregates using a dialysis-precipitation method, achieving drug contents of 6.3-8.5 wt %. FTIR spectra and DSC thermograms showed that tocopherol- and testosterone-grafted SF conjugates predominantly adopted a ß-sheet conformation. After the esterification of tyrosine residues on SF chains with the vitamin or testosterone, the hydrodynamic diameters almost doubled or tripled that of SF. The zeta potential values after esterification increased to about -30 mV, which favors the stability of aggregates in aqueous medium. Controlled and almost quantitative release of CPT was achieved after 6 days in PBS at 37 °C, with almost linear release during the first 8 h. MCF-7 cancer cells exhibited good uptake of CPT-loaded SF aggregates after 6 h, causing cell death and cell cycle arrest in the G2/M phase. Substantial uptake of the CPT-loaded aggregates into MCF-7 spheroids was shown after 3 days. Furthermore, all CPT-loaded SF aggregates demonstrated superior toxicity to MCF-7 spheroids compared with parent CPT. Blank SF aggregates induced no hemolysis at pH 6.2 and 7.4, while CPT-loaded SF aggregates provoked hemolysis at pH 6.2 but not at pH 7.4. In contrast, parent CPT caused hemolysis at both pH tested. Therefore, CPT-loaded SF aggregates are promising candidates for chemotherapy.

13.
Chemistry ; 27(10): 3192, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33432677

RESUMO

Invited for the cover of this issue is the group of Ian Teasdale and Yolanda Salinas at the Johannes Kepler University Linz. The image depicts the self-propelled Janus micromotors reported in this work. Read the full text of the article at 10.1002/chem.202004792.

14.
Chemistry ; 27(10): 3262-3267, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33205559

RESUMO

This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H2 O2 (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel. Conformational changes of the polymers at defined temperatures regulate the bubble formation rate and thus act as brakes with considerable deceleration/acceleration observed. As the components can be easily varied, this represents a versatile, modular platform for the exogenous velocity control of micromotors.

15.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202795

RESUMO

Porous organosilica microparticles consisting of silane-derived cyclophosphazene bridges were synthesized by a surfactant-mediated sol-gel process. Starting from the substitution of hexachlorocyclotriphosphazene with allylamine, two different precursors were obtained by anchoring three or six alkoxysilane units, via a thiol-ene photoaddition reaction. In both cases, spherical, microparticles (size average of ca. 1000 nm) with large pores were obtained, confirmed by both, scanning and transmission electron microscopy. Particles synthesized using the partially functionalized precursor containing free vinyl groups were further functionalized with a thiol-containing molecule. While most other reported mesoporous organosilica particles are essentially hybrids with tetraethyl orthosilicate (TEOS), a unique feature of these particles is that structural control is achieved by exclusively using organosilane precursors. This allows an increase in the proportion of the co-components and could springboard these novel phosphorus-containing organosilica microparticles for different areas of technology.


Assuntos
Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Tamanho da Partícula , Porosidade
16.
Sci Rep ; 10(1): 15720, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973262

RESUMO

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.

17.
Nanoscale ; 12(31): 16556-16561, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32743623

RESUMO

Photon cooling via anti-Stokes photoluminescence (ASPL) is a promising approach to realize all-solid-state cryo-refrigeration by photoexcitation. Photoluminescence quantum yields close to 100% and a strong coupling between phonons and excited states are required to achieve net cooling. We have studied the anti-Stokes photoluminescence of thin films of methylammonium lead bromide nanoparticles. We found that the anti-Stokes photoluminescence is thermally activated with an activation energy of ∼80 meV. At room temperature the ASPL up-conversion efficiency is ∼60% and it depends linearly on the excitation intensity. Our results suggest that upon further optimization of their optical properties, the investigated particles could be promising candidates for the demonstration of photon cooling in thin solid films.

18.
Nanomaterials (Basel) ; 10(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481603

RESUMO

Herein we present hybrid mesoporous silica nanomaterials (MSN) with visible light-sensitive ruthenium complexes acting as gates. Two different [Ru(bpy)2L1L2]2+ complexes were investigated by grafting [Ru(bpy)2(4AMP)2](PF6)2 (RC1) and [Ru(bpy)2(PPh3)Cl]Cl (RC2) via two or one ligands onto the surface of mesoporous silica nanoparticles (MSNs), to give MSN1-RC1 and MSN2-RC2, respectively. The pores were previously loaded with a common dye, safranin O, and release studies were conducted. The number and position of the ligands were shown to influence the photocages behavior and thus the release of the cargo. Release studies from MSN1-RC1 in acetonitrile showed that in the dark the amount of dye released was minimal after 300 min, whereas a significant increase was measured upon visible light irradiation (ca. 90%). While successful as a photochemically-controlled gated system, RC1 was restricted to organic solvents since it required cleavage of two ligands in order to be cleaved from the surface, and in water only one is cleaved. Release studies from the second nanomaterial MSN2-RC2, where the complex RC2 was bound to the MSN via only one ligand, showed stability under darkness and in aqueous solution up to 180 min and, rapid release of the dye when irradiated with visible light. Furthermore, this system was demonstrated to be reversible, since, upon heating to 80 °C, the system could effectively re-close the pores and re-open it again upon visible light irradiation. This work, thus, demonstrates the potential reversible gate mechanism of the ruthenium-gated nanomaterials upon visible light irradiation, and could be envisioned as a future design of photochemically-driven drug delivery nanosystems or on/off switches for nanorelease systems.

19.
RSC Adv ; 10(46): 27305-27314, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516962

RESUMO

A switchable silane derived stimuli-responsive bottle-brush polyphosphazene (PPz) was prepared and attached to the surface of mesoporous silica nanoparticles (MSNs). The hybrid polymer with PEG-like Jeffamine® M-2005 side-arms undergo conformational changes in response to both pH and temperature due to its amphiphilic substituents and protonatable main-chain, hence were investigated as a gatekeeper. Safranin O as control fluorophore or the anticancer drug camptothecin (CPT) were encapsulated in the PPz-coated MSNs. At temperatures below the lower critical solution temperature (LCST), the swollen conformation of PPz efficiently blocked the cargo within the pores. However, above the LCST, the PPz collapsed, allowing release of the payload. Additionally, protonation of the polymer backbone at lower pH values was observed to enhance opening of the pores from the surface of the MSNs and therefore the release of the dye. In vitro studies demonstrated the ability of these nanoparticles loaded with the drug camptothecin to be endocytosed in both models of tumor (A549) and healthy epithelial (BEAS-2B) lung cells. Their accumulation and the release of the chemotherapeutic drug, co-localized within lysosomes, was faster and higher for tumor than for healthy cells, further, the biocompatibility of PPz-gated nanosystem without drug was demonstrated. Tailored dual responsive polyphosphazenes thus represent novel and promising candidates in the construction of future gated mesoporous silica nanocarriers designs for lung cancer-directed treatment.

20.
J Mater Chem B ; 7(48): 7783-7794, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755890

RESUMO

The synthesis and characterisation of novel polyphosphazene nanocarriers, based on hydrophilic polyalkylene oxide Jeffamine M1000 and hydrophobic steroids with a glycinate linker for pH-controlled release of diosgenin and two brassinosteroids (DI31 and S7) with agrochemical and potential anticancer activity, is hereby described. Polyphosphazenes carrying approximately 17 wt% of DI31 or S7 self-assembled in water to form 120-150 nm nanoaggregates, which showed an excellent plant growth effect on radish cotyledons due to sustained delivery of approximately 30% of the agrochemicals after 4 days. Cytotoxic evaluation showed that all polymers carrying steroids and Jeffamine M1000 resulted in strong to moderate toxicity to MCF-7 cancer cells and were non-toxic to primary human lung fibroblast cells at 0.1 to 0.025 mg mL-1. Thus, DI31 and S7 bearing polymers applied at 10-4 to 10-6 mg mL-1 for delivery of recommended DI31 or S7 quantities to crops should be harmless to humans. Particularly, DI31 and S7 bearing polymers with strong cytotoxicity on MCF-7 and non-toxicity on primary human lung fibroblasts, good cell uptake after 6 hours, proper hydrodynamic sizes between 100 and 200 nm, and slow sustained release of cytotoxic drugs (DI31, S7) in acidic conditions might potentiate their accumulation in cancer tissues with good antitumour effects and minor side effects. These results demonstrated that preparation of brassinosteroid bearing polymers is a promising strategy for the preparation of better agrochemicals with reduced pollutant impact on sustainable agriculture and potential anticancer formulations based on analogues of brassinosteroids.


Assuntos
Agroquímicos/farmacocinética , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Compostos Organofosforados/metabolismo , Polímeros/metabolismo , Brassinosteroides/farmacocinética , Células Cultivadas , Diosgenina/farmacocinética , Liberação Controlada de Fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Células MCF-7 , Reguladores de Crescimento de Plantas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...