Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Npj Mater Degrad ; 8(1): 44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682040

RESUMO

Calcia-Magnesia-Alumino Silicate (CMAS) is a form of molten siliceous residue generated at elevated temperatures within aeroengines. CMAS adheres to the surface of thermal barrier coatings (TBCs) and has the potential to cause significant damage to engine components, resulting in TBC failures. The aviation industry has long recognized CMAS as a substantial threat to aircraft engines, and this threat persists today. A substantial amount of research has been carried out, primarily focusing on gaining a fundamental understanding of the degradation mechanism of traditional TBCs manufactured using air plasma spraying (APS) and electron beam physical vapor deposition (EB-PVD) technologies after CMAS attack. A thorough understanding of why CMAS forms, its role in causing severe spallation, and how to prevent it is of significant concern both academically and industrially. This review article provides a detailed examination of the chemistry of CMAS and the resulting degradation mechanisms that the TBC may encounter throughout the aeroengine service life. This article also explores recent research, incorporating case studies, on the impact of CMAS attack on the resulting chemical and structural modifications of the ceramic topcoats. Current strategies designed to mitigate CMAS infiltration and perspectives for enhanced mitigation are discussed.

2.
Int J Adv Manuf Technol ; 130(9-10): 4169-4186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283951

RESUMO

Hydrophobicity plays a pivotal role in mitigating surface fouling, corrosion, and icing in critical marine and aerospace environments. By employing ultrafast laser texturing, the characteristic properties of a material's surface can be modified. This work investigates the potential of an advanced ultrafast laser texturing manufacturing process to enhance the hydrophobicity of aluminium alloy 7075. The surface properties were characterized using goniometry, 3D profilometry, SEM, and XPS analysis. The findings from this study show that the laser process parameters play a crucial role in the manufacturing of the required surface structures. Numerical optimization with response surface optimization was conducted to maximize the contact angle on these surfaces. The maximum water contact angle achieved was 142º, with an average height roughness (Sa) of 0.87 ± 0.075 µm, maximum height roughness (Sz) of 19.4 ± 2.12 µm, and texture aspect ratio of 0.042. This sample was manufactured with the process parameters of 3W laser power, 0.08 mm hatch distance, and a 3 mm/s scan speed. This study highlights the importance of laser process parameters in the manufacturing of the required surface structures and presents a parametric modeling approach that can be used to optimize the laser process parameters to obtain a specific surface morphology and hydrophobicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s00170-024-12971-8.

3.
Nutrients ; 15(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004148

RESUMO

Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.


Assuntos
Lactobacillales , Fermentação , Alimento Funcional , Laticínios/microbiologia , Ácido Láctico
4.
Curr Res Food Sci ; 7: 100593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790857

RESUMO

Lactobacillus rhamnosus (L. rhamnosus) is a commensal bacterium with health-promoting properties and with a wide range of applications within the food industry. To improve and optimize the control of L. rhamnosus biomass production in batch and fed-batch bioprocesses, this study proposes the application of artificial neural network (ANN) modelling to improve process control and monitoring, with potential future implementation as a basis for a digital twin. Three ANNs were developed using historical data from ten bioprocesses. These ANNs were designed to predict the biomass in batch bioprocesses with different media compositions, predict biomass in fed-batch bioprocesses, and predict the growth rate in fed-batch bioprocesses. The immunomodulatory effect of the L. rhamnosus samples was examined and found to elicit an anti-inflammatory response as evidenced by the inhibition of IL-6 and TNF-α secretion. Overall, the findings of this study reinforce the potential of ANN modelling for bioprocess optimization aimed at improved control for maximising the volumetric productivity of L. rhamnosus as an immunomodulatory agent with applications in the functional food industry.

5.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834617

RESUMO

In this study, the effect of heat treatment parameters on the optimized performance of Ni-rich nickel-titanium wires (NiTi/Nitinol) were investigated that were intended for application as actuators across various industries. In this instance, the maximum recovery strain and actuation angle achievable by a nitinol wire were employed as indicators of optimal performance. Nitinol wires were heat treated at different temperatures, 400-500 °C, and times, 30-120 min, to study the effects of these heat treatment parameters on the actuation performance and properties of the nitinol wires. Assessment covered changes in density, hardness, phase transition temperatures, microstructure, and alloy composition resulting from these heat treatments. DSC analysis revealed a decrease in the austenite transformation temperature, which transitioned from 42.8 °C to 24.39 °C with an increase in heat treatment temperature from 400 °C to 500 °C and was attributed to the formation of Ni4Ti3 precipitates. Increasing the heat treatment time led to an increase in the austenite transformation temperature. A negative correlation between the hardness of the heat-treated samples and the heat treatment temperature was found. This trend can be attributed to the formation and growth of Ni4Ti3 precipitates, which in turn affect the matrix properties. A novel approach involving image analysis was utilized as a simple yet robust analysis method for measurement of recovery strain for the wires as they underwent actuation. It was found that increasing heat treatment temperature from 400 °C to 500 °C above 30 min raised recovery strain from 0.001 to 0.01, thereby maximizing the shape memory effect.

6.
Adv Colloid Interface Sci ; 321: 103010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804661

RESUMO

This article provides an in-depth analysis of various fabrication methods of bimetallic nanoparticles (BNP), including chemical, biological, and physical techniques. The review explores BNP's diverse uses, from well-known applications such as sensing water treatment and biomedical uses to less-studied areas like breath sensing for diabetes monitoring and hydrogen storage. It cites results from over 1000 researchers worldwide and >300 peer-reviewed articles. Additionally, the article discusses current trends, actionable recommendations, and the importance of synthetic analysis for industry players looking to optimize manufacturing techniques for specific applications. The article also evaluates the pros and cons of various fabrication methods, highlighting the potential of plant extract synthesis for mass production of capped BNPs. However, it warns that this method may not be suitable for certain applications requiring ligand-free surfaces. In contrast, physical methods like laser ablation offer better control and reactivity, especially for applications where ligand-free surfaces are critical. The report underscores the environmental benefits of plant extract synthesis compared to chemical methods that use hazardous chemicals and pose risks to extraction, production, and disposal. The article emphasizes the need for life cycle assessment (LCA) articles in the literature, given the growing volume of research on nanotechnology materials. This article caters to researchers at all stages and applies to various fields applying nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotecnologia/métodos , Catálise , Extratos Vegetais
7.
J Funct Biomater ; 14(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37888161

RESUMO

Additively manufactured synthetic bone scaffolds have emerged as promising candidates for the replacement and regeneration of damaged and diseased bones. By employing optimal pore architecture, including pore morphology, sizes, and porosities, 3D-printed scaffolds can closely mimic the mechanical properties of natural bone and withstand external loads. This study aims to investigate the deformation pattern exhibited by polymeric bone scaffolds fabricated using the PolyJet (PJ) 3D printing technique. Cubic and hexagonal closed-packed uniform scaffolds with porosities of 30%, 50%, and 70% are utilized in finite element (FE) models. The crushable foam plasticity model is employed to analyze the scaffolds' mechanical response under quasi-static compression. Experimental validation of the FE results demonstrates a favorable agreement, with an average percentage error of 12.27% ± 7.1%. Moreover, the yield strength and elastic modulus of the scaffolds are evaluated and compared, revealing notable differences between cubic and hexagonal closed-packed designs. The 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds exhibit significantly higher yield strengths of 46.89%, 58.29%, and 66.09%, respectively, compared to the hexagonal closed-packed bone scaffolds at percentage strains of 5%, 6%, and 7%. Similarly, the elastic modulus of the 30%, 50%, and 70% porous cubic pore-shaped bone scaffolds is 42.68%, 59.70%, and 58.18% higher, respectively, than the hexagonal closed-packed bone scaffolds at the same percentage strain levels. Furthermore, it is observed in comparison with our previous study the µSLA-printed bone scaffolds demonstrate 1.5 times higher elastic moduli and yield strengths compared to the PJ-printed bone scaffolds.

8.
Sci Rep ; 13(1): 17196, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821490

RESUMO

The advancement of biosensor research has been a primary driving force in the continuing progress of modern medical science. While traditional nanofabrication methods have long been the foundation of biosensor research, recent years have seen a shift in the field of nanofabrication towards laser-based techniques. Here we report a gold-based biosensor, with a limit of detection (LoD) 3.18 µM, developed using environmentally friendly Laser Ablation Synthesis in Liquid (LASiS) and Confined Atmospheric Pulsed-laser (CAP) deposition techniques for the first time. The sensors were able detect a DNA fragment corresponding to the longest unpaired sequence of the c-Myc gene, indicating their potential for detecting such fragments in the ctDNA signature of various cancers. The LoD of the developed novel biosensor highlights its reliability and sensitivity as an analytical platform. The reproducibility of the sensor was examined via the production and testing of 200 sensors with the same fabrication methodology. This work offers a scalable, and green approach to fabricating viable biosensors capable of detecting clinically relevant oncogenic targets.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Reprodutibilidade dos Testes , Ouro , Limite de Detecção , Técnicas Biossensoriais/métodos , Lasers
9.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376247

RESUMO

Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.

10.
Integr Mater Manuf Innov ; 12(1): 52-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873293

RESUMO

In this paper, a part-scale simulation study on the effects of bi-directional scanning patterns (BDSP) on residual stress and distortion formation in additively manufactured Nitinol (NiTi) parts is presented. The additive manufacturing technique of focus is powder bed fusion using a laser beam (PBF-LB), and simulation was performed using Ansys Additive Print software. The numerical approach adopted in the simulation was based on the isotropic inherent strain model, due to prohibitive material property requirements and computational limitations of full-fledged part-scale 3D thermomechanical finite element approaches. In this work, reconstructed 2D and 3D thermograms (heat maps) from in situ melt pool thermal radiation data, the predicted residual stresses, and distortions from the simulation study were correlated for PBF-LB processed NiTi samples using selected BDSPs. The distortion and residual stress distribution were found to vary greatly between BDSPs with no laser scan vector rotations per new layer, whereas negligible variations were observed for BDSPs with laser scan vector rotations per new layer. The striking similarities between the reconstructed thermograms of the first few layers and the simulated stress contours of the first lumped layer provide a practical understanding of the temperature gradient mechanism of residual stress formation in PBF-LB processed NiTi. This study provides a qualitative, yet practical insight towards understanding the trends of formation and evolution of residual stress and distortion, due to scanning patterns.

11.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982412

RESUMO

Food spoilage is an ongoing global issue that contributes to rising carbon dioxide emissions and increased demand for food processing. This work developed anti-bacterial coatings utilising inkjet printing of silver nano-inks onto food-grade polymer packaging, with the potential to enhance food safety and reduce food spoilage. Silver nano-inks were synthesised via laser ablation synthesis in solution (LaSiS) and ultrasound pyrolysis (USP). The silver nanoparticles (AgNPs) produced using LaSiS and USP were characterised using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectrophotometry and dynamic light scattering (DLS) analysis. The laser ablation technique, operated under recirculation mode, produced nanoparticles with a small size distribution with an average diameter ranging from 7-30 nm. Silver nano-ink was synthesised by blending isopropanol with nanoparticles dispersed in deionised water. The silver nano-inks were printed on plasma-cleaned cyclo-olefin polymer. Irrespective of the production methods, all silver nanoparticles exhibited strong antibacterial activity against E. coli with a zone of inhibition exceeding 6 mm. Furthermore, silver nano-inks printed cyclo-olefin polymer reduced the bacterial cell population from 1235 (±45) × 106 cell/mL to 960 (±110) × 106 cell/mL. The bactericidal performance of silver-coated polymer was comparable to that of the penicillin-coated polymer, wherein a reduction in bacterial population from 1235 (±45) × 106 cell/mL to 830 (±70) × 106 cell/mL was observed. Finally, the ecotoxicity of the silver nano-ink printed cyclo-olefin polymer was tested with daphniids, a species of water flea, to simulate the release of coated packaging into a freshwater environment.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Embalagem de Alimentos , Nanopartículas Metálicas/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
12.
Met Mater Int ; 28(11): 2735-2746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340187

RESUMO

Abstract: Laser powder bed fusion (L-PBF) success in the industrial scenario strongly depends on the ability to manufacture components without defects and with high building rates, but also on the ability to effectively control the microstructure to gain the required properties in the final component. In this regard, the recently developed numerical simulation software of L-PBF technologies can represent an effective tool, since many of them provide solidification data (i.e. temperature gradient and cooling rate) useful for microstructure prediction. In this work, a numerical model was applied to simulate the processing of four single scan tracks of 316L stainless steel processed with different parameters. Temperature and cooling rate around the melt pool were extracted from the numerical model and used to estimate the microstructure cellular arm spacing and the microhardness. Experimental measurements were then compared with the estimated values revealing good agreement. The good agreement between experimental and estimated values shows the advantages of the proposed method for microstructure and microhardness prediction based on numerical modelling as a useful resource for process optimization according to the required final microstructural features.

13.
Materials (Basel) ; 15(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955298

RESUMO

Nitinol (NiTi) alloys are gaining extensive attention due to their excellent mechanical, superelasticity, and biocompatibility properties. It is difficult to model the complex mechanical behavior of NiTi alloys due to the solid-state diffusionless phase transformations, and the differing elasticity and plasticity presenting from these two phases. In this work, an Auricchio finite element (FE) model was used to model the mechanical behavior of superelastic NiTi and was validated with experimental data from literature. A Representative Volume Element (RVE) was used to simulate the NiTi microstructure, and a microscale study was performed to understand how the evolution of martensite phase from austenite affects the response of the material upon loading. Laser Powder Bed Fusion (L-PBF) is an effective way to build complex NiTi components. Porosity being one of the major defects in Laser Powder Bed Fusion (L-PBF) processes, the model was used to correlate the macroscale effect of porosity (1.4-83.4%) with structural stiffness, dissipated energy during phase transformations, and damping properties. The results collectively summarize the effectiveness of the Auricchio model and show that this model can aid engineers to plan NiTi processing and operational parameters, for example for heat pump, medical implant, actuator, and shock absorption applications.

14.
Nutrients ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889895

RESUMO

Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.


Assuntos
Produtos Fermentados do Leite , Lactobacillales , Produtos Fermentados do Leite/microbiologia , Fermentação , Microbiologia de Alimentos , Alimento Funcional , Humanos , Lactobacillales/metabolismo , Polissacarídeos Bacterianos/metabolismo
15.
Glob Chall ; 6(6): 2100120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35712023

RESUMO

Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.

16.
Polymers (Basel) ; 14(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35567027

RESUMO

Functionalised holograms are important for applications utilising smart diffractive optical elements for light redirection, shaping and in the development of sensors/indicators. This paper reports on holographic recording in novel magnetic nanocomposites and the observed temperature change in dry layers and liquid samples exposed to alternating magnetic field (AMF). The nanocomposite consists of N-isopropylacrylamide (NIPA)-based polymer doped with magnetic nanoparticles (MNPs), and local heating is achieved through magnetic induction. Here, volume transmission holographic gratings (VTHGs) are recorded with up to 24% diffraction efficiency (DE) in the dry layers of magnetic nanocomposites. The dry layers and liquid samples are then exposed to AMF. Efficient heating was observed in the liquid samples doped with Fe3O4 MNPs of 20 nm average size where the temperature increased from 27 °C to 64 °C after 300 s exposure to 111 mT AMF. The temperature increase in the dry layers doped with the same nanoparticles after exposure to 4.4 mT AMF was observed to be 6 °C. No temperature change was observed in the undoped layers. Additionally, we have successfully recorded Denisyuk holograms in the magnetic nanocomposite materials. The results reveal that the magnetic nanocomposite layers are suitable for recording holograms and need further optimisation in developing holographic indicators for mapping AMFs.

17.
Int J Mater Form ; 15(3): 30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509322

RESUMO

Metal additive manufacturing, which uses a layer-by-layer approach to fabricate parts, has many potential advantages over conventional techniques, including the ability to produced complex geometries, fast new design part production, personalised production, have lower cost and produce less material waste. While these advantages make AM an attractive option for industry, determining process parameters which result in specific properties, such as the level of porosity and tensile strength, can be a long and costly endeavour. In this review, the state-of-the-art in the control of part properties in AM is examined, including the effect of microstructure on part properties. The simulation of microstructure formation via numerical simulation and machine learning is examined which can provide process quality control and has the potential to aid in rapid process optimisation via closed loop control. In-situ monitoring of the AM process, is also discussed as a route to enable first time right production in the AM process, along with the hybrid approach of AM fabrication with post-processing steps such as shock peening, heat treatment and rolling. At the end of the paper, an outlook is presented with a view towards potential avenues for further research required in the field of metal AM.

18.
ACS Chem Neurosci ; 11(24): 4024-4047, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33285063

RESUMO

The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas , Nanotecnologia , Neurotransmissores
19.
Materials (Basel) ; 13(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291734

RESUMO

Laser-Powder Bed Fusion (L-PBF) of metallic parts is a highly multivariate process. An understanding of powder feedstock properties is critical to ensure part quality. In this paper, a detailed examination of two commercial stainless steel 316L powders produced using the gas atomization process is presented. In particular, the effects of the powder properties (particle size and shape) on the powder rheology were examined. The results presented suggest that the powder properties strongly influence the powder rheology and are important factors in the selection of suitable powder for use in an additive manufacturing (AM) process. Both of the powders exhibited a strong correlation between the particle size and shape parameters and the powder rheology. Optical microscope images of melt pools of parts printed using the powders in an L-PBF machine are presented, which demonstrated further the significance of the powder morphology parameters on resulting part microstructures.

20.
J Chromatogr A ; 1629: 461506, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866822

RESUMO

The development of a new, lower cost method for trace explosives recovery from complex samples is presented using miniaturised, click-together and leak-free 3D-printed solid phase extraction (SPE) blocks. For the first time, a large selection of ten commercially available 3D printing materials were comprehensively evaluated for practical, flexible and multiplexed SPE using stereolithography (SLA), PolyJet and fused deposition modelling (FDM) technologies. Miniaturised single-piece, connectable and leak-free block housings inspired by Lego® were 3D-printed in a methacrylate-based resin, which was found to be most stable under different aqueous/organic solvent and pH conditions, using a cost-effective benchtop SLA printer. Using a tapered SPE bed format, frit-free packing of multiple different commercially available sorbent particles was also possible. Coupled SPE blocks were then shown to offer efficient analyte enrichment and a potentially new approach to improve the stability of recovered analytes in the field when stored on the sorbent, rather than in wet swabs. Performance was measured using liquid chromatography-high resolution mass spectrometry and was better, or similar, to commercially available coupled SPE cartridges, with respect to recovery, precision, matrix effects, linearity and range, for a selection of 13 peroxides, nitramines, nitrate esters and nitroaromatics. Mean % recoveries from dried blood, oil residue and soil matrices were 79 ± 24%, 71 ± 16% and 76 ± 24%, respectively. Excellent detection limits between 60 fg for 3,5-dinitroaniline to 154 pg for nitroglycerin were also achieved across all matrices. To our knowledge, this represents the first application of 3D printing to SPE of so many organic compounds in complex samples. Its introduction into this forensic method offered a low-cost, 'on-demand' solution for selective extraction of explosives, enhanced flexibility for multiplexing/design alteration and potential application at-scene.


Assuntos
Substâncias Explosivas/análise , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Substâncias Explosivas/isolamento & purificação , Concentração de Íons de Hidrogênio , Limite de Detecção , Espectrometria de Massas , Metacrilatos/química , Nitroglicerina/análise , Nitroglicerina/isolamento & purificação , Peróxidos/análise , Peróxidos/isolamento & purificação , Impressão Tridimensional , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...