Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Genome Med ; 15(1): 67, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679810

RESUMO

BACKGROUND: Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS: To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS: Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS: Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.


Assuntos
Neoplasias do Sistema Nervoso , Adulto , Humanos , Criança , Linfócitos B , Inibidores de Checkpoint Imunológico , Imunoterapia , Microambiente Tumoral/genética
2.
Neurooncol Adv ; 4(1): vdac026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475274

RESUMO

Background: Inhibition of the sonic hedgehog (SHH) pathway with Smoothened (SMO) inhibitors is a promising treatment strategy in SHH-activated medulloblastoma, especially in adult patients. However, the problem is that tumors frequently acquire resistance to the treatment. To understand the underlying resistance mechanisms and to find ways to overcome the resistance, preclinical models that became resistant to SMO inhibition are needed. Methods: To induce SMO inhibitor resistant tumors, we have treated a patient-derived xenograft (PDX) model of SHH medulloblastoma, sensitive to SMO inhibition, with 20 mg/kg Sonidegib using an intermitted treatment schedule. Vehicle-treated and resistant models were subjected to whole-genome and RNA sequencing for molecular characterization and target engagement. In vitro drug screens (76 drugs) were performed using Sonidegib-sensitive and -resistant lines to find other drugs to target the resistant lines. One of the top hits was then validated in vivo. Results: Nine independent Sonidegib-resistant PDX lines were generated. Molecular characterization of the resistant models showed that eight models developed missense mutations in SMO and one gained an inactivating point mutation in MEGF8, which acts downstream of SMO as a repressor in the SHH pathway. The in vitro drug screen with Sonidegib-sensitive and -resistant lines identified good efficacy for Selinexor in the resistant line. Indeed, in vivo treatment with Selinexor revealed that it is more effective in resistant than in sensitive models. Conclusions: We report the first human SMO inhibitor resistant medulloblastoma PDX models, which can be used for further preclinical experiments to develop the best strategies to overcome the resistance to SMO inhibitors in patients.

3.
Adv Sci (Weinh) ; 8(23): e2101923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719887

RESUMO

Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Dissecação , Glioblastoma/cirurgia , Humanos , Camundongos
4.
Cancer Res ; 80(23): 5393-5407, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33046443

RESUMO

Medulloblastoma is among the most common malignant brain tumors in children. Recent studies have identified at least four subgroups of the disease that differ in terms of molecular characteristics and patient outcomes. Despite this heterogeneity, most patients with medulloblastoma receive similar therapies, including surgery, radiation, and intensive chemotherapy. Although these treatments prolong survival, many patients still die from the disease and survivors suffer severe long-term side effects from therapy. We hypothesize that each patient with medulloblastoma is sensitive to different therapies and that tailoring therapy based on the molecular and cellular characteristics of patients' tumors will improve outcomes. To test this, we assembled a panel of orthotopic patient-derived xenografts (PDX) and subjected them to DNA sequencing, gene expression profiling, and high-throughput drug screening. Analysis of DNA sequencing revealed that most medulloblastomas do not have actionable mutations that point to effective therapies. In contrast, gene expression and drug response data provided valuable information about potential therapies for every tumor. For example, drug screening demonstrated that actinomycin D, which is used for treatment of sarcoma but rarely for medulloblastoma, was active against PDXs representing Group 3 medulloblastoma, the most aggressive form of the disease. Functional analysis of tumor cells was successfully used in a clinical setting to identify more treatment options than sequencing alone. These studies suggest that it should be possible to move away from a one-size-fits-all approach and begin to treat each patient with therapies that are effective against their specific tumor. SIGNIFICANCE: These findings show that high-throughput drug screening identifies therapies for medulloblastoma that cannot be predicted by genomic or transcriptomic analysis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Medicina de Precisão/métodos , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Criança , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Meduloblastoma/genética , Camundongos Endogâmicos NOD , Mutação , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nature ; 576(7786): 274-280, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802000

RESUMO

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Assuntos
MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , RNA Helicases DEAD-box/genética , DNA Topoisomerases Tipo I/genética , Humanos , Mutação , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Recidiva , Ribonuclease III/genética
6.
Nat Commun ; 10(1): 3914, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477715

RESUMO

YAP1 fusion-positive supratentorial ependymomas predominantly occur in infants, but the molecular mechanisms of oncogenesis are unknown. Here we show YAP1-MAMLD1 fusions are sufficient to drive malignant transformation in mice, and the resulting tumors share histo-molecular characteristics of human ependymomas. Nuclear localization of YAP1-MAMLD1 protein is mediated by MAMLD1 and independent of YAP1-Ser127 phosphorylation. Chromatin immunoprecipitation-sequencing analyses of human YAP1-MAMLD1-positive ependymoma reveal enrichment of NFI and TEAD transcription factor binding site motifs in YAP1-bound regulatory elements, suggesting a role for these transcription factors in YAP1-MAMLD1-driven tumorigenesis. Mutation of the TEAD binding site in the YAP1 fusion or repression of NFI targets prevents tumor induction in mice. Together, these results demonstrate that the YAP1-MAMLD1 fusion functions as an oncogenic driver of ependymoma through recruitment of TEADs and NFIs, indicating a rationale for preclinical studies to block the interaction between YAP1 fusions and NFI and TEAD transcription factors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ependimoma/metabolismo , Fatores de Transcrição NFI/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/genética , Ependimoma/genética , Ependimoma/patologia , Células HEK293 , Humanos , Camundongos , Fatores de Transcrição NFI/genética , Células NIH 3T3 , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
7.
Nat Med ; 24(11): 1752-1761, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30349086

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Genomic studies have provided insights into molecular subgroups and oncogenic drivers of pediatric brain tumors that may lead to novel therapeutic strategies. To evaluate new treatments, better preclinical models adequately reflecting the biological heterogeneity are needed. Through the Children's Oncology Group ACNS02B3 study, we have generated and comprehensively characterized 30 patient-derived orthotopic xenograft models and seven cell lines representing 14 molecular subgroups of pediatric brain tumors. Patient-derived orthotopic xenograft models were found to be representative of the human tumors they were derived from in terms of histology, immunohistochemistry, gene expression, DNA methylation, copy number, and mutational profiles. In vivo drug sensitivity of targeted therapeutics was associated with distinct molecular tumor subgroups and specific genetic alterations. These models and their molecular characterization provide an unprecedented resource for the cancer community to study key oncogenic drivers and to evaluate novel treatment strategies.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas/patologia , Imuno-Histoquímica , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Metilação de DNA/genética , Feminino , Genômica , Humanos , Masculino , Camundongos , Mutação , Pediatria
8.
J Clin Oncol ; : JCO2017764720, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30332335

RESUMO

PURPOSE: Children with histologically diagnosed high-risk medulloblastoma, supratentorial primitive neuroectodermal tumor of the CNS (CNS-PNET), and pineoblastoma (PBL) have had poor survival despite intensive treatment. We included these patients in this Children's Oncology Group trial. Molecular profiling later revealed tumor heterogeneity that was not detectable at protocol inception. Enrollment of patients with CNS-PNET/PBL was subsequently discontinued, and outcomes for this part of the study are reported here. PATIENTS AND METHODS: In this phase III, four-arm prospective trial, consenting children age 3-22 years with newly diagnosed CNS-PNET were randomly assigned (1:1) to receive carboplatin during radiation and/or adjuvant isotretinoin after standard intensive therapy. Primary outcome measure was event-free survival (EFS) in the intent-to-treat population. Molecular tumor classification was retrospectively completed using DNA methylation profiling. RESULTS: Eighty-five participants with institutionally diagnosed CNS-PNETs/PBLs were enrolled. Of 60 patients with sufficient tissue, 31 were nonpineal in location, of which 22 (71%) represented tumors that were not intended for trial inclusion, including 18 high-grade gliomas (HGGs), two atypical teratoid rhabdoid tumors, and two ependymomas. Outcomes across tumor types were strikingly different. Patients with supratentorial embryonal tumors/PBLs exhibited 5-year EFS and overall survival of 62.8% (95% CI, 43.4% to 82.2%) and 78.5% (95% CI, 62.2% to 94.8%), respectively, whereas patients with molecularly classified HGG had EFS and overall survival of 5.6% (95% CI, 0% to 13.0%) and 12.0% (95% CI, 0% to 24.7%), respectively. Neither carboplatin, nor isotretinoin significantly altered outcomes for all patients. Survival for patients with HGG was similar to that of historic studies that avoid craniospinal irradiation and intensive chemotherapy. CONCLUSION: For patients with CNS-PNET/PBL, prognosis is considerably better than previously assumed when molecularly confirmed HGGs are removed. Identification of molecular HGGs may spare affected children from unhelpful intensive treatment. This trial highlights the challenges of a histology-based diagnosis for pediatric brain tumors and indicates that molecular profiling should become a standard component of initial diagnosis.

9.
Cancer Cell ; 34(3): 379-395.e7, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205043

RESUMO

The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.


Assuntos
Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Receptor ErbB-4/metabolismo , Quinases da Família src/metabolismo , Adolescente , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Cerebelo/patologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , Meduloblastoma/genética , Camundongos , Camundongos Transgênicos , Fosforilação , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Quinases da Família src/genética
11.
Lancet Oncol ; 19(6): 785-798, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29753700

RESUMO

BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Metilação de DNA , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Meduloblastoma/genética , Modelos Genéticos , Adolescente , Adulto , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Hereditariedade , Humanos , Lactente , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Meduloblastoma/terapia , Linhagem , Fenótipo , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Transcriptoma , Sequenciamento do Exoma , Adulto Jovem
12.
Nature ; 555(7696): 321-327, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489754

RESUMO

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Assuntos
Genoma Humano/genética , Genômica , Mutação/genética , Neoplasias/classificação , Neoplasias/genética , Adolescente , Adulto , Criança , Cromotripsia , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Diploide , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa/genética , Humanos , Terapia de Alvo Molecular , Taxa de Mutação , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Adulto Jovem
13.
Cancer Res ; 77(21): e62-e66, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092942

RESUMO

Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models minimal information standard (PDX-MI) for reporting on the generation, quality assurance, and use of PDX models. PDX-MI defines the minimal information for describing the clinical attributes of a patient's tumor, the processes of implantation and passaging of tumors in a host mouse strain, quality assurance methods, and the use of PDX models in cancer research. Adherence to PDX-MI standards will facilitate accurate search results for oncology models and their associated data across distributed repository databases and promote reproducibility in research studies using these models. Cancer Res; 77(21); e62-66. ©2017 AACR.


Assuntos
Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto/estatística & dados numéricos , Animais , Bases de Dados como Assunto , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pacientes
14.
Neuro Oncol ; 19(12): 1607-1617, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-28482026

RESUMO

BACKGROUND: Embryonal tumor with multilayered rosettes (ETMR) is a rare and aggressive embryonal brain tumor that solely occurs in infants and young children and has only recently been recognized as a separate brain tumor entity in the World Health Organization classification for CNS tumors. Patients have a very dismal prognosis with a median survival of 12 months upon diagnosis despite aggressive treatment. The aim of this study was to develop novel treatment regimens in a preclinical drug screen in order to inform potentially more active clinical trial protocols. METHODS: We have carried out an in vitro and in vivo drug screen using the ETMR cell line BT183 and its xenograft model. Furthermore, we have generated the first patient-derived xenograft (PDX) model for ETMR and evaluated our top drug candidates in an in vitro drug screen using this model. RESULTS: BT183 cells are very sensitive to the topoisomerase inhibitors topotecan and doxorubicin, to the epigenetic agents decitabine and panobinostat, to actinomycin D, and to targeted drugs such as the polo-like kinase 1 (PLK1) inhibitor volasertib, the aurora kinase A inhibitor alisertib, and the mammalian target of rapamycin (mTOR) inhibitor MLN0128. In xenograft mice, monotherapy with topotecan, volasertib, and actinomycin D led to a temporary response in tumor growth and a significant increase in survival. Finally, using multi-agent treatment regimens of topotecan or doxorubicin combined with methotrexate and vincristine, the response in tumor growth and survival was further increased compared with mice receiving single treatments. CONCLUSIONS: We have identified several promising candidates for combination therapies in future clinical trials for ETMR patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dactinomicina/farmacologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Tumores Neuroectodérmicos Primitivos/tratamento farmacológico , Pteridinas/farmacologia , Topotecan/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Embrionárias de Células Germinativas/patologia , Tumores Neuroectodérmicos Primitivos/patologia , Inibidores da Topoisomerase I/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 8(7): 11460-11479, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28002790

RESUMO

Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hence, valid preclinical models are currently very limited, but preclinical testing of new compounds is urgently needed. We transduced the PA short-term culture DKFZ-BT66 derived from the PA of a 2-year old patient with a doxycycline-inducible system coding for Simian Vacuolating Virus 40 Large T Antigen (SV40-TAg). SV40-TAg inhibits TP53/CDKN1A and CDKN2A/RB1, two pathways critical for OIS induction and maintenance. DNA methylation array and KIAA1549:BRAF fusion analysis confirmed pilocytic astrocytoma identity of DKFZ-BT66 cells after establishment. Readouts were analyzed in proliferating as well as senescent states, including cell counts, viability, cell cycle analysis, expression of SV40-Tag, CDKN2A (p16), CDKN1A (p21), and TP53 (p53) protein, and gene-expression profiling. Selected MAPK inhibitors (MAPKi) including clinically available MEK inhibitors (MEKi) were tested in vitro. Expression of SV40-TAg enabled the cells to bypass OIS and to resume proliferation with a mean doubling time of 45h allowing for propagation and long-term culture. Withdrawal of doxycycline led to an immediate decrease of SV40-TAg expression, appearance of senescent morphology, upregulation of CDKI proteins and a subsequent G1 growth arrest in line with the re-induction of senescence. DKFZ-BT66 cells still underwent replicative senescence that was overcome by TERT expression. Testing of a set of MAPKi revealed differential responses in DKFZ-BT66. MEKi efficiently inhibited MAPK signaling at clinically achievable concentrations, while BRAF V600E- and RAF Type II inhibitors showed paradoxical activation. Taken together, we have established the first patient-derived long term expandable PA cell line expressing the KIAA1549:BRAF-fusion suitable for preclinical drug testing.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Antígenos Transformantes de Poliomavirus/genética , Western Blotting , Proliferação de Células/fisiologia , Pré-Escolar , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas B-raf/genética , Transcriptoma , Transdução Genética
16.
Cancer Cell ; 29(3): 379-393, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26923874

RESUMO

Atypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed 192 ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.


Assuntos
Epigênese Genética/genética , Tumor Rabdoide/genética , Teratoma/genética , Neoplasias Encefálicas/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Humanos , Mutação/genética , Proteína SMARCB1 , Fatores de Transcrição/genética
17.
Cancer Cell ; 29(3): 311-323, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26977882

RESUMO

Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy, many patients succumb to the disease, and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro, in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
18.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919435

RESUMO

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Metilação de DNA , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patologia , Sequência de Aminoácidos , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/diagnóstico , Criança , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Tumores Neuroectodérmicos/classificação , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transdução de Sinais , Transativadores , Proteínas Supressoras de Tumor/genética
19.
Int J Cancer ; 138(12): 2905-14, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26856307

RESUMO

Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.


Assuntos
Neoplasias Cerebelares/genética , Instabilidade Genômica , Meduloblastoma/genética , Homeostase do Telômero , Estudos de Casos e Controles , Neoplasias Cerebelares/enzimologia , Transtornos Cromossômicos/enzimologia , Transtornos Cromossômicos/genética , Ependimoma/enzimologia , Ependimoma/genética , Expressão Gênica , Humanos , Meduloblastoma/enzimologia , Telomerase/genética , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...