Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19099-19107, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708227

RESUMO

A sustainable, bioinspired approach to functionalize basalt fibers with an innovative gallic acid (GA)-iron phenyl phosphonate complex (BF-GA-FeP), for the purpose of improving the flame retardancy in composite materials, is developed. BFs were at first pretreated with O3, obtaining surface free hydroxyl groups that allowed the subsequent covalent immobilization of biosourced GA units on the fiber through ester linkages. Phenolic -OH groups of the GA units were then exploited for the complexation of iron phenyl phosphonate, resulting in the target-complex-coated BF fiber (BF-GA-FeP). Microwave plasma atomic emission spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analyses of BF-GA-FeP highlighted an increase in iron content, modification of fiber morphology, and occurrence of phosphorus, respectively. BFs, modified with a low amount of the developed complex, were used to reinforce a poly(lactic acid) (PLA) matrix in the production of a biocomposite (PLA/BF-FeP). PLA/BF-FeP showed a higher thermal stability than neat PLA and PLA reinforced with untreated BFs (PLA/BF), as confirmed by thermogravimetric analysis. The cone calorimeter test highlighted several advantages for PLA/BF-FeP, including a prolonged time to ignition, a reduced time to flame out, an 8% decrease in the peak heat release rate, and a 15% reduced fire propagating index compared to PLA/BF.

2.
J Hazard Mater ; 452: 131244, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965354

RESUMO

In the present study commercial Polylactic Acid-based disposable cups and plates were selected for lab scale anaerobic degradability tests. The experiments were carried out under thermophilic conditions at different inoculum to substrate ratios and test material sizes, and the specific biogas production and associated kinetics were evaluated. Maximum biogas production was comparable for almost all the experimental runs (1620 and 1830 NmL/gTOCPLA) and a biodegradation degree in the range 86-100% was attained. Moreover, physical, chemical and microscopical analyses were used to characterize the tested materials before and after the degradation. The products composition was assessed and the presence of some additives (mainly Ca-based) was detected. Potential correlations among the process parameters and product composition were derived and a delay in process kinetics with increasing amount of additives embedded in the polymeric matrix was observed, confirming the relevant influence of the chemical blend on the biodegradation process.


Assuntos
Biocombustíveis , Poliésteres , Anaerobiose , Polímeros , Biodegradação Ambiental
3.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295233

RESUMO

Biochar has been used in various applications, e.g., as a soil conditioner and in remediation of contaminated water, wastewater, and gaseous emissions. In the latter application, biochar was shown to be a suitable alternative to activated carbon, providing high treatment efficiency. Since biochar is a by-product of waste pyrolysis, its use allows for compliance with circular economics. Thus, this research aims to obtain a detailed characterization of three carbonaceous materials: an activated carbon (CARBOSORB NC 1240®) and two biochars (RE-CHAR® and AMBIOTON®). In particular, the objective of this work is to compare the properties of three carbonaceous materials to evaluate whether the application of the two biochars is the same as that of activated carbon. The characterization included, among others, particle size distribution, elemental analysis, pH, scanning electron microscope, pore volume, specific surface area, and ionic exchange capacity. The results showed that CARBOSORB NC 1240® presented a higher specific surface (1126.64 m2/g) than AMBIOTON® (256.23 m2/g) and RE-CHAR® (280.25 m2/g). Both biochar and activated carbon belong to the category of mesoporous media, showing a pore size between 2 and 50 nm (20-500 Å). Moreover, the chemical composition analysis shows similar C, H, and N composition in the three carbonaceous materials while a higher O composition in RE-CHAR® (9.9%) than in CARBOSORB NC 1240 ® (2.67%) and AMBIOTON® (1.10%). Differences in physical and chemical properties are determined by the feedstock and pyrolysis or gasification temperature. The results obtained allowed to compare the selected materials among each other and with other carbonaceous adsorbents.

4.
Materials (Basel) ; 15(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36013703

RESUMO

The adsorption properties of Aloe vera (Aloe barbadensis Miller) for the uptake of Methylene Blue (MB) from water were investigated after pre-treating the material with water-ethanol solutions at different ethanol concentrations: 0% v/v (AV0), 25% v/v (AV25), and 50% v/v (AV50). The pre-treated materials were characterized as follows: the pHZC was evaluated to be 6, 5.7, and 7.2 for AV0, AV25, and AV50, respectively; from BET-BJH analysis the mesoporous nature of the material and an increase from 108.2 (AV0) to 331.7 (AV50) m2/kg of its solid surface area was observed; TG analysis revealed a significat increase in volatile compounds from the untreated (5.4%) to the treated materials (8.9%, 10.3%, and 11.3% for AV0, AV25, and AV50, respectively). Adsorption batch tests were then performed to investigate the equilibrium, the kinetics, and the thermodynamics of the process. Results suggested that the Langmuir model was in agreement with the experimental results, and values for qmax of 199 mg/g, 311 mg/g, and 346 mg/g were calculated for AV0, AV25, and AV50, respectively. The kinetic results were used to develop a mathematical model to estimate the effective diffusion coefficient for each type of Aloe adopted. Effective diffusion coefficients of 5.43·10-7 cm2/min, 3.89·10-7 cm2/min, and 5.78·10-7 cm2/min were calculated for AV0, AV25, and AV50, respectively. It was found that pre-treatment, on the one hand, enhances the adsorption capacity of the material and on the other, reduces its affinity toward MB uptake.

5.
Polymers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267735

RESUMO

In recent years, fluoropolymers have found numerous applications in the architectural field because of their combination of mechanical-chemical resistance and high transparency. In the present work, commercial fluorinated polymers, such as perfluoro alkoxy (PFA) and ethylene tetrafluoroethylene copolymer (ETFE), have been evaluated for use as protective and transparent layers on monumental and archaeological sites (to preserve mosaics or frescoes) during the phases of restoration or maintenance outdoors. Considering this specific application, the present study was developed by evaluating the evolution of the mechanical (tensile, tear propagation resistance, and low-velocity impact tests) and chemical (FTIR and DSC analysis) properties of the films after accelerated UV aging. The results that were obtained demonstrated the high resistance capacity of the ETFE, which exhibits considerably higher elastic modulus and critical tear energy values than PFA films (1075.38 MPa and 131.70 N/mm for ETFE; 625.48 MPa and 59.06 N/mm for PFA). After aging, the samples exhibited only a slight reduction of about 5% in the elastic modulus for both polymers and 10% in the critical tear energy values for PFA. Furthermore, the differences in impact resistance after aging were limited for both polymers; however, the ETFE film showed higher peak force than the PFA films (82.95 N and 42.22 N, respectively). The results obtained demonstrated the high resistance capacity of ETFE films, making them the most suitable candidate for the considered application.

6.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164123

RESUMO

Organic semiconductors hold the promise of simple, large area solution deposition, low thermal budgets as well as compatibility with flexible substrates, thus emerging as viable alternatives for cost-effective (opto)-electronic devices. In this study, we report the optimized synthesis and characterization of a helically shaped polycyclic aromatic compound, namely benzo[i]pentahelicene-3,6-dione, and explored its use in the fabrication of organic field effect transistors. In addition, we investigated its thermal, optical absorption, and electrochemical properties. Finally, the single crystal X-ray characterization is reported.

7.
Nanomaterials (Basel) ; 11(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562142

RESUMO

The present research is focused on the synthesis of hexagonal ZnO wurtzite nanorods for the decoration of commercially available electrospun nylon nanofibers. The growth of ZnO was performed by a hydrothermal technique and for the first time on commercial electrospun veils. The growth step was optimized by adopting a procedure with the refresh of growing solution each hour of treatment (Method 1) and with the maintenance of a specific growth solution volume for the entire duration of the treatment (Method 2). The overall treatment time and volume of solution were also optimized by analyzing the morphology of ZnO nanostructures, the coverage degree, the thermal and mechanical stability of the obtained decorated electrospun nanofibers. In the optimal synthesis conditions (Method 2), hexagonal ZnO nanorods with a diameter and length of 53.5 nm ± 5.7 nm and 375.4 nm ± 37.8 nm, respectively, were obtained with a homogeneous and complete coverage of the veils. This easily scalable procedure did not damage the veils that could be potentially used as toughening elements in composites to prevent delamination onset and propagation. The presence of photoreactive species makes these materials ideal also as environmentally friendly photocatalysts for wastewater treatment. In this regard, photocatalytic tests were performed using methylene blue (MB) as model compound. Under UV light irradiation, the degradation of MB followed a first kinetic order data fitting and after 3 h of treatment a MB degradation of 91.0% ± 5.1% was achieved. The reusability of decorated veils was evaluated and a decrease in photocatalysis efficiency was detected after the third cycle of use.

8.
Molecules ; 25(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325651

RESUMO

The use of inhibition chemicals holds the prospect of an efficient strategy to control crystallization in porous materials, thereby potentially contributing to the prevention or mitigation of the salt decay phenomenon in modern as well as historical building materials in a more sustainable manner. In this review, we first provide an essential background on the mechanism of salt crystallization and on the factors influencing this phenomenon; next, we illustrate the mechanism at the basis of the action of crystal growth inhibitors, and critically discuss the major advances in the development of different families of inhibitors, particularly focusing on their influence on salt transport and crystallization within the structure of porous media. Specifically, correlations between the crystallization inhibition processes in porous materials and variables, such as porous substrate composition and properties, contaminant salt type and concentrations, microclimatic conditions, inhibiting solution concentration and properties, and application methods, will be highlighted. Environmental aspects, limitations, and problems associated with some inhibition chemicals are also taken into account. Finally, a survey and a discussion on the most representative experimental techniques and instrumentation available to assess qualitatively and quantitatively the inhibitor effectiveness, as well as recently developed modelling tools are given out.


Assuntos
Materiais de Construção , Cristalização , Porosidade , Sais/efeitos adversos , Sais/química , Materiais de Construção/análise , Modelos Teóricos , Cloreto de Sódio/efeitos adversos , Cloreto de Sódio/química
9.
Nanomaterials (Basel) ; 10(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079073

RESUMO

The colonization of microorganisms and their subsequent interaction with stone substrates under different environmental conditions encourage deterioration of materials by multiple mechanisms resulting in changes in the original color, appearance and durability. One of the emerging alternatives to remedy biodeterioration is nanotechnology, thanks to nanoparticle properties such as small size, no-toxicity, high photo-reactivity, and low impact on the environment. This study highlighted the effects of ZnO-based nanomaterials of two bacteria genera isolated from the Temple of Concordia (Agrigento's Valley of the Temples in Sicily, Italy) that are involved in biodeterioration processes. The antimicrobial activities of ZnO-nanorods (Zn-NRs) and graphene nanoplatelets decorated with Zn-NRs (ZNGs) were evaluated against the Gram positive Arthrobacter aurescens and two isolates of the Gram negative Achromobacter spanius. ZNGs demonstrated high antibacterial and antibiofilm activities on several substrates such as stones with different porosity. In the case of ZNGs, a marked time- and dose-dependent bactericidal effect was highlighted against all bacterial species. Therefore, these nanomaterials represent a promising tool for developing biocompatible materials that can be exploited for the conservation of cultural heritage. These nanostructures can be successfully applied without releasing toxic compounds, thus spreading their usability.

10.
Polymers (Basel) ; 12(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069810

RESUMO

Four different strategies for mitigating the highly hydrophilic nature of flax fibers were investigated with a view to increase their compatibility with apolar polypropylene. The effects of two carbon nanostructures (graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs)), of a chemical modification with a fatty acid (stearic acid), and of maleated polypropylene on interfacial adhesion, mechanical properties (tensile and flexural), and thermal stability (TGA) were compared. The best performance was achieved by a synergistic combination of GNPs and maleated polypropylene, which resulted in an increase in tensile strength and modulus of 42.46% and 54.96%, respectively, compared to baseline composites. Stearation proved to be an effective strategy for increasing the compatibility with apolar matrices when performed in an ethanol solution with a 0.4 M concentration. The results demonstrate that an adequate selection of surface modification strategies leads to considerable enhancements in targeted properties.

11.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973087

RESUMO

The present work investigates the effects of an environmentally friendly treatment based on supercritical carbon dioxide (scCO2) on the interfacial adhesion of flax fibers with thermoset matrices. In particular, the influence of this green treatment on the mechanical (by single yarn tensile test), thermal (by TGA), and chemical (by FT-IR) properties of commercially available flax yarns was preliminary addressed. Results showed that scCO2 can significantly modify the biochemical composition of flax fibers, by selectively removing lignin and hemicellulose, without altering their thermal stability and, most importantly, their mechanical properties. Single yarn fragmentation test results highlighted an increased interfacial adhesion after scCO2 treatment, especially for the vinylester matrix, in terms of reduced debonding and critical fragment length values compared to the untreated yarns by 18.9% and 15.1%, respectively. The treatment was less effective for epoxy matrix, for which debonding and critical fragment length values were reduced to a lesser extent, by 3.4% and 3.7%, respectively.


Assuntos
Dióxido de Carbono/farmacologia , Linho/química , Química Verde/métodos , Linho/ultraestrutura , Imagem Óptica , Resistência ao Cisalhamento , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Resistência à Tração , Termogravimetria , Microtomografia por Raio-X
12.
Biosens Bioelectron ; 112: 8-17, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29684749

RESUMO

In this study, polythiophene copolymers have been used as modifier for electrode surfaces in order to allow the immobilization of active pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and to simultaneously improve the direct electrical connection of the enzyme with the electrode. Polymer films are electrosynthesized in aqueous solution without the need of surfactants onto carbon nanotubes modified gold electrodes from mixtures of 3-thiopheneacetic acid (ThCH2CO2H) and 3-methoxythiophene (ThOCH3) using a potentiostatic pulse method. Polythiophene deposition significantly improves the bioelectrocatalysis of PQQ-GDH: the process starts at - 200 mV vs. Ag/AgCl and allows well-defined glucose detection at 0 V vs. Ag/AgCl with high current density. Several parameters of the electro-polymerization method have been evaluated to maximize the anodic current output after enzyme coupling. The polymer deposited by this new procedure has been morphologically and chemically characterized by different methods (SEM, EDX, FT-IR, UV-Vis, XPS and Raman spectroscopy). The bioelectrocatalytic response towards increasing glucose concentrations exhibits a dynamic range extending from 1 µM to 2 mM. The low applied potential allows to avoid interferences from easily oxidizable substances such as uric acid and ascorbic acid. Short and long-term stability has been evaluated. Finally, the PQQ-GDH electrode has been coupled to a bilirubin oxidase (BOD)- and carbon nanotube-based cathode in order to test its performance as anode of a biofuel cell. The promising results suggest a further investigation of this kind of polymers and, in particular, the study of the interaction with other enzymes in order to employ them in building up biosensors and biofuel cells.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose Desidrogenase/química , Glucose/isolamento & purificação , Glucose/química , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Cofator PQQ/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Tiofenos/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-29660677

RESUMO

The characterization of ancient and modern alizarin-based lakes is a largely studied topic in the literature. Analytical data on contemporary alizarin-based lakes, however, are still poor, though of primary importance, since these lakes might be indeed present in contemporary and fake paintings as well as in retouchings. In this work we systematically investigate the chemical composition and the optical features of fifteen alizarin-based lakes, by a multi-analytical technique approach combining spectroscopic methods (i.e. Energy Dispersive X-ray Fluorescence Spectroscopy, EDXRF; Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy, ATR-FTIR; X-ray Powder Diffraction, XRD; UV induced fluorescence and reflectance spectroscopies) and chromatography (i.e. High-performance Liquid Chromatography coupled with a Photodiode Array Detector, HPLC-PDA). Most of the samples contain typical compounds from the natural roots of madder, as occurring in ancient and modern lakes, but in two samples (23600-Kremer-Pigmente and alizarin crimson-Zecchi) any anthraquinonic structures were identified, thus leading to hypothesize the presence of synthetic dyes. The detection of lucidin primeveroside and ruberythrique acid in some lakes suggest the use of Rubia tinctorum. One sample (23610-Kremer-Pigmente) presents alizarin as the sole compound, thereby revealing to be a synthetic dye. Moreover, gibbsite, alunite and kaolinite were found to be used as substrates and/or mordants. Visible absorption spectra of the anthraquinonic lakes show two main absorption bands at about 494-511nm and 537-564nm, along with a shoulder at about 473-479nm in presence of high amounts of purpurin. Finally, from the results obtained by UV induced fluorescence spectroscopy it is possible to figure out that, although it is commonly assumed that the madder lake presents an orange-pink fluorescence, the inorganic compounds, added to the recipe, could induce a quenching phenomenon or an inhibition of the fluorescence, as occurring in some commercial alizarin-based lakes.

14.
Bioresour Technol ; 249: 592-598, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29091842

RESUMO

The effects of an enzymatic treatment with cellulase and mannanase on the properties of marine microalgae Nannochloropsis sp. were investigated. The combined use of these enzymes synergistically promoted the recovery of lipids from the microalgae, increasing the extraction yield from 40.8 to over 73%. Untreated and enzymatically treated microalgae were characterized by chemical analysis and by TGA/DTG, FTIR, XRD and SEM. Significant changes were observed in the chemical composition and thermal behavior of the microalgae. The enzymatic treatment also resulted in an increase of the crystalline-to-amorphous cellulose ratio. SEM images revealed dramatic changes in cell morphology, extensive cell damage and release of intracellular material. Overall, the results obtained indicate that the enzymes used are capable of disrupting the microalgal cell wall and that a combination of common analytical techniques can be used to assess the enzyme-induced damage.


Assuntos
Microalgas , beta-Manosidase , Celulase , Lipídeos , Estramenópilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...