Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1247853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941662

RESUMO

Introduction: Breeding barley cultivars adapted to drought requires in-depth knowledge on physiological drought responses. Methods: We used a high-throughput functional phenotyping platform to examine the response of four high-yielding European spring barley cultivars to a standardized drought treatment imposed around flowering. Results: Cv. Chanell showed a non-conserving water-use behavior with high transpiration and maximum productivity under well-watered conditions but rapid transpiration decrease under drought. The poor recovery upon re-irrigation translated to large yield losses. Cv. Baronesse showed the most water-conserving behavior, with the lowest pre-drought transpiration and the most gradual transpiration reduction under drought. Its good recovery (resilience) prevented large yield losses. Cv. Formula was less conserving than cv. Baronesse and produced low yet stable yields. Cv. RGT's dynamic water use with high transpiration under ample water supply and moderate transpiration decrease under drought combined with high resilience secured the highest and most stable yields. Discussion: Such a dynamic water-use behavior combined with higher drought resilience and favorable root traits could potentially create an ideotype for intermediate drought. Prospective studies will examine these results in field experiments and will use the newly gained understanding on water use in barley to improve process descriptions in crop simulation models to support crop model-aided ideotype design.

2.
Int J Biometeorol ; 67(1): 133-148, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36474028

RESUMO

Due to global climate change, droughts are likely to become more frequent and more severe in many regions such as in South Africa. In Limpopo, observed high climate variability and projected future climate change will likely increase future maize production risks. This paper evaluates drought patterns in Limpopo at two representative sites. We studied how drought patterns are projected to change under future climatic conditions as an important step in identifying adaptation measures (e.g., breeding maize ideotypes resilient to future conditions). Thirty-year time horizons were analyzed, considering three emission scenarios and five global climate models. We applied the WOFOST crop model to simulate maize crop growth and yield formation over South Africa's summer season. We considered three different crop emergence dates. Drought indices indicated that mainly in the scenario SSP5-8.5 (2051-2080), Univen and Syferkuil will experience worsened drought conditions (DC) in the future. Maize yield tends to decline and future changes in the emergence date seem to impact yield significantly. A possible alternative is to delay sowing date to November or December to reduce the potential yield losses. The grain filling period tends to decrease in the future, and a decrease in the duration of the growth cycle is very likely. Combinations of changed sowing time with more drought tolerant maize cultivars having a longer post-anthesis phase will likely reduce the potential negative impact of climate change on maize.


Assuntos
Secas , Zea mays , África do Sul , Mudança Climática , Grão Comestível , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA