Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 7338, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795713

RESUMO

We report on experimental investigations of proton acceleration from solid foils irradiated with PW-class laser-pulses, where highest proton cut-off energies were achieved for temporal pulse parameters that varied significantly from those of an ideally Fourier transform limited (FTL) pulse. Controlled spectral phase modulation of the driver laser by means of an acousto-optic programmable dispersive filter enabled us to manipulate the temporal shape of the last picoseconds around the main pulse and to study the effect on proton acceleration from thin foil targets. The results show that applying positive third order dispersion values to short pulses is favourable for proton acceleration and can lead to maximum energies of 70 MeV in target normal direction at 18 J laser energy for thin plastic foils, significantly enhancing the maximum energy compared to ideally compressed FTL pulses. The paper further proves the robustness and applicability of this enhancement effect for the use of different target materials and thicknesses as well as laser energy and temporal intensity contrast settings. We demonstrate that application relevant proton beam quality was reliably achieved over many months of operation with appropriate control of spectral phase and temporal contrast conditions using a state-of-the-art high-repetition rate PW laser system.

2.
Sci Rep ; 9(1): 8157, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148567

RESUMO

Accretion processes play a crucial role in a wide variety of astrophysical systems. Of particular interest are magnetic cataclysmic variables, where, plasma flow is directed along the star's magnetic field lines onto its poles. A stationary shock is formed, several hundred kilometres above the stellar surface; a distance far too small to be resolved with today's telescopes. Here, we report the results of an analogous laboratory experiment which recreates this astrophysical system. The dynamics of the laboratory system are strongly influenced by the interplay of material, thermal, magnetic and radiative effects, allowing a steady shock to form at a constant distance from a stationary obstacle. Our results demonstrate that a significant amount of plasma is ejected in the lateral direction; a phenomenon that is under-estimated in typical magnetohydrodynamic simulations and often neglected in astrophysical models. This changes the properties of the post-shock region considerably and has important implications for many astrophysical studies.

3.
Rev Sci Instrum ; 89(9): 093304, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278706

RESUMO

This article reports on the development of thin diamond detectors and their characterization for their application in temporal profile measurements of subnanosecond ion bunches. Two types of diamonds were used: a 20 µm thin polycrystalline chemical vapor deposited (CVD) diamond and a membrane with a thickness of (5 ± 1) µm etched out of a single crystal (sc) CVD diamond. The combination of a small detector electrode and an impedance matched signal outlet leads to excellent time response properties with a signal pulse resolution (FWHM) of τ = (113 ± 11) ps. Such a fast diamond detector is a perfect device for the time of flight measurements of MeV ions with bunch durations in the subnanosecond regime. The scCVD diamond membrane detector was successfully implemented within the framework of the laser ion generation handling and transport project, in which ion beams are accelerated via a laser-driven source and shaped with conventional accelerator technology. The detector was used to measure subnanosecond proton bunches with an intensity of 108 protons per bunch.

4.
Phys Rev Lett ; 118(19): 194801, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548516

RESUMO

We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a µm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10 MG and E>0.1 MV/µm fields with a µm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...