Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 104(3): 546-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25952407

RESUMO

Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (ß-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry. It was found that always complete 2-3 µm sized grains were removed from the structure and that the ß-TCP is dissolved more rapidly. This selective dissolution of the ß-TCP grains was confirmed by XRD measurements. The blocks were eroded from the outside toward the center. The structure remained mechanically stable because the central part showed a delayed degradation and because the slower dissolving HA grains preserved the integrity of the structure.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Durapatita/química , Microscopia Eletrônica de Varredura , Difração de Raios X , Microtomografia por Raio-X
2.
J Phys Chem B ; 109(48): 22985-94, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16853995

RESUMO

The electrochemical behavior of arrays of Au nanoparticles assembled on Au electrodes modified by 11-mercaptoundecanoic acid (MUA) and poly-L-lysine (PLYS) was investigated as a function of the particle number density. The self-assembled MUA and PLYS layers formed compact ultrathin films with a low density of defects as examined by scanning tunneling microscopy. The electrostatic adsorption of Au particles of 19 +/- 3 nm on the PLYS layer resulted in randomly distributed arrays in which the particle number density is controlled by the adsorption time. In the absence of the nanoparticles, the dynamics of electron transfer involving the hexacynoferrate redox couple is strongly hindered by the self-assembled film. This effect is primarily associated with a decrease in the electron tunneling probability as the redox couple cannot permeate through the MUA monolayer at the electrode surface. Adsorption of the Au nanoparticles dramatically affects the electron-transfer dynamics even at low particle number density. Cyclic voltammetry and impedance spectroscopy were interpreted in terms of classical models developed for partially blocked surfaces. The analysis shows that the electron transfer across a single particle exhibits the same phenomenological rate constant of electron transfer as for a clean Au surface. The apparent unhindered electron exchange between the nanoparticles and the electrode surface is discussed in terms of established models for electron tunneling across metal-insulator-metal junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA