Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1623, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238470

RESUMO

Asynchronously cycling cells pose a challenge to the accurate characterization of phase-specific gene expression. Current strategies, including RNAseq, survey the steady state gene expression across the cell cycle and are inherently limited by their inability to resolve dynamic gene regulatory networks. Single cell RNAseq (scRNAseq) can identify different cell cycle transcriptomes if enough cycling cells are present, however some cells are not amenable to scRNAseq. Therefore, we merged two powerful strategies, the CDT1 and GMNN degrons used in Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) cell cycle sensors and the ribosomal protein epitope tagging used in RiboTrap/Tag technologies to isolate cell cycle phase-specific mRNA for sequencing. The resulting cell cycle dependent, tagged ribosomal proteins (ccTaggedRP) were differentially expressed during the cell cycle, had similar subcellular locations as endogenous ribosomal proteins, incorporated into ribosomes and polysomes, and facilitated the recovery of cell cycle phase-specific RNA for sequencing. ccTaggedRP has broad applications to investigate phase-specific gene expression in complex cell populations.


Assuntos
Proteínas de Ciclo Celular , Transcriptoma , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Proteínas Ribossômicas/genética , Ribossomos/genética
2.
JACC Basic Transl Sci ; 8(5): 501-514, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37325396

RESUMO

Coronary microvascular disease (CMD) caused by obesity and diabetes is major contributor to heart failure with preserved ejection fraction; however, the mechanisms underlying CMD are not well understood. Using cardiac magnetic resonance applied to mice fed a high-fat, high-sucrose diet as a model of CMD, we elucidated the role of inducible nitric oxide synthase (iNOS) and 1400W, an iNOS antagonist, in CMD. Global iNOS deletion prevented CMD along with the associated oxidative stress and diastolic and subclinical systolic dysfunction. The 1400W treatment reversed established CMD and oxidative stress and preserved systolic/diastolic function in mice fed a high-fat, high-sucrose diet. Thus, iNOS may represent a therapeutic target for CMD.

3.
Circ Res ; 130(9): 1345-1361, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35369706

RESUMO

BACKGROUND: DYRK1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) contributes to the control of cycling cells, including cardiomyocytes. However, the effects of inhibition of DYRK1a on cardiac function and cycling cardiomyocytes after myocardial infarction (MI) remain unknown. METHODS: We investigated the impacts of pharmacological inhibition and conditional genetic ablation of DYRK1a on endogenous cardiomyocyte cycling and left ventricular systolic function in ischemia-reperfusion (I/R) MI using αMHC-MerDreMer-Ki67p-RoxedCre::Rox-Lox-tdTomato-eGFP (RLTG) (denoted αDKRC::RLTG) and αMHC-Cre::Fucci2aR::DYRK1aflox/flox mice. RESULTS: We observed that harmine, an inhibitor of DYRK1a, improved left ventricular ejection fraction (39.5±1.6% and 29.1±1.6%, harmine versus placebo, respectively), 2 weeks after I/R MI. Harmine also increased cardiomyocyte cycling after I/R MI in αDKRC::RLTG mice, 10.8±1.5 versus 24.3±2.6 enhanced Green Fluorescent Protein (eGFP)+ cardiomyocytes, placebo versus harmine, respectively, P=1.0×10-3. The effects of harmine on left ventricular ejection fraction were attenuated in αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes. The conditional cardiomyocyte-specific genetic ablation of DYRK1a in αMHC-Cre::Fucci2aR::DYRK1aflox/flox (denoted DYRK1a k/o) mice caused cardiomyocyte hyperplasia at baseline (210±28 versus 126±5 cardiomyocytes per 40× field, DYRK1a k/o versus controls, respectively, P=1.7×10-2) without changes in cardiac function compared with controls, or compensatory changes in the expression of other DYRK isoforms. After I/R MI, DYRK1a k/o mice had improved left ventricular function (left ventricular ejection fraction 41.8±2.2% and 26.4±0.8%, DYRK1a k/o versus control, respectively, P=3.7×10-2). RNAseq of cardiomyocytes isolated from αMHC-Cre::Fucci2aR::DYRK1aflox/flox and αMHC-Cre::Fucci2aR mice after I/R MI or Sham surgeries identified enrichment in mitotic cell cycle genes in αMHC-Cre::Fucci2aR::DYRK1aflox/flox compared with αMHC-Cre::Fucci2aR. CONCLUSIONS: The pharmacological inhibition or cardiomyocyte-specific ablation of DYRK1a caused baseline hyperplasia and improved cardiac function after I/R MI, with an increase in cell cycle gene expression, suggesting the inhibition of DYRK1a may serve as a therapeutic target to treat MI.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Animais , Modelos Animais de Doenças , Harmina/metabolismo , Harmina/farmacologia , Hiperplasia/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Volume Sistólico , Função Ventricular Esquerda
4.
J Cardiovasc Dev Dis ; 9(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35323621

RESUMO

Adult mammalian cardiomyocytes demonstrate scarce cycling and even lower proliferation rates in response to injury. Signals that enhance cardiomyocyte proliferation after injury will be groundbreaking, address unmet clinical needs, and represent new strategies to treat cardiovascular diseases. In vivo methods to monitor cardiomyocyte proliferation are critical to addressing this challenge. Fortunately, advances in transgenic approaches provide sophisticated techniques to quantify cardiomyocyte cycling and proliferation.

5.
Circ Res ; 128(2): 155-168, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33146578

RESUMO

RATIONALE: Endogenously cycling adult cardiomyocytes increase after myocardial infarction (MI) but remain scarce and are generally thought not to contribute to myocardial function. However, this broadly held assumption has not been tested, mainly because of the lack of transgenic reporters that restrict Cre expression to adult cardiomyocytes that reenter the cell cycle. OBJECTIVE: We created and validated a new transgenic mouse, αMHC (alpha myosin heavy chain)-MerDreMer-Ki67p-RoxedCre (denoted αDKRC [cardiomyocyte-specific αMHC-MerDreMer-Ki67p-RoxedCre]) that restricts Cre expression to cycling adult cardiomyocytes and uniquely integrates spatial and temporal adult cardiomyocyte cycling events based on the DNA specificities of orthologous Dre and Cre recombinases. We then created αDKRC::DTA mice that expressed an inducible diphtheria toxin in adult cycling cardiomyocytes and examined the effects of ablating these endogenously cycling cardiomyocytes on myocardial function after ischemic-reperfusion (I/R) MI. METHODS AND RESULTS: A tandem αDKRC transgene was designed, validated in cultured cells, and used to make transgenic mice. The αDKRC transgene integrated between MYH6 and MYH7 and did not disrupt expression of the surrounding genes. Compared with controls, αDKRC::RLTG (Rox-Lox-tdTomato-eGFP) mice treated with Tamoxifen expressed tdTomato+ in cardiomyocytes with rare Bromodeoxyuridine+, eGFP+ cardiomyocytes, consistent with reentry of the cell cycle. We then pretreated αDKRC::RLTG mice with Tamoxifen to activate the reporter before sham or reperfusion (I/R) MI surgeries. Compared with Sham surgery, the I/R MI group had increased single and paired eGFP+ (enhanced green fluorescent protein)+ cardiomyocytes predominantly in the border zones (5.8±0.5 versus 3.3±0.3 cardiomyocytes per 10-micron section, N=8-9 mice per group, n=16-24 sections per mouse), indicative of cycled cardiomyocytes. The single to paired eGFP+ cardiomyocyte ratio was ≈9 to 1 (5.2±0.4 single versus 0.6±0.2 paired cardiomyocytes) in the I/R MI group after MI, suggesting that cycling cardiomyocytes were more likely to undergo polyploidy than replication. The ablation of endogenously cycling adult cardiomyocytes in αDKRC::DTA (diphtheria) mice caused progressive worsening left ventricular chamber size and function after I/R MI, compared with controls. CONCLUSIONS: Although scarce, endogenously cycling adult cardiomyocytes contribute to myocardial function after injury, suggesting that these cells may be physiologically relevant.


Assuntos
Ciclo Celular , Proliferação de Células , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Animais , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Integrases/genética , Integrases/metabolismo , Antígeno Ki-67/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Fatores de Tempo , Função Ventricular Esquerda , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...