Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 6): 2086-2093, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721755

RESUMO

There are more than 100 beamlines or endstations worldwide that frequently support X-ray absorption fine-structure (XAFS) measurements, thus providing critical enabling capability for research across numerous scientific disciplines. However, the absence of a supporting tier of more readily accessible, lower-performing options has caused systemic inefficiencies, resulting in high oversubscription and the omission of many scientifically and socially valuable XAFS applications that are incompatible with the synchrotron facility access model. To this end, this work describes the design, performance and uses of the Clean Energy Institute X-ray absorption near-edge structure (CEI-XANES) laboratory spectrometer and its use as both a user-present and mail-in facility. Such new additions to the XAFS infrastructure landscape raise important questions about the most productive interactions between synchrotron radiation and laboratory-based capabilities; this can be discussed in the framework of five categories, only one of which is competitive. The categories include independent operation on independent problems, use dictated by convenience, pre-synchrotron preparatory use of laboratory capability, post-synchrotron follow-up use of laboratory capability, and parallel use of both synchrotron radiation and laboratory systems.

2.
J Am Chem Soc ; 140(24): 7449-7452, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29847111

RESUMO

The transfer of protons and electrons is key to energy conversion and storage, from photosynthesis to fuel cells. Increased understanding and control of these processes are needed. A new anthracene-phenol-pyridine molecular triad was designed to undergo fast photoinduced multiple-site concerted proton-electron transfer (MS-CPET), with the phenol moiety transferring an electron to the photoexcited anthracene and a proton to the pyridine. Fluorescence quenching and transient absorption experiments in solutions and glasses show rapid MS-CPET (3.2 × 1010 s-1 at 298 K). From 5.5 to 90 K, the reaction rate and kinetic isotope effect (KIE) are independent of temperature, with zero Arrhenius activation energy. From 145 to 350 K, there are only slight changes with temperature. This MS-CPET reaction thus occurs by tunneling of both the proton and electron, in different directions. Since the reaction proceeds without significant thermal activation energy, the rate constant indicates the magnitude of the electron/proton double tunneling probability.


Assuntos
Antracenos/química , Elétrons , Fenóis/química , Prótons , Piridinas/química , Antracenos/efeitos da radiação , Fluorescência , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Fenóis/efeitos da radiação , Piridinas/efeitos da radiação , Temperatura , Raios Ultravioleta
3.
ACS Nano ; 9(11): 11177-91, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26417918

RESUMO

Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.

4.
Nano Lett ; 15(2): 1315-23, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25585039

RESUMO

Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

5.
J Am Chem Soc ; 136(38): 13154-7, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25162937

RESUMO

We report on the second family of layered perovskite white-light emitters with improved photoluminescence quantum efficiencies (PLQEs). Upon near-ultraviolet excitation, two new Pb-Cl and Pb-Br perovskites emit broadband "cold" and "warm" white light, respectively, with high color rendition. Emission from large, single crystals indicates an origin from the bulk material and not surface defect sites. The Pb-Br perovskite has a PLQE of 9%, which is undiminished after 3 months of continuous irradiation. Our mechanistic studies indicate that the emission has contributions from strong electron-phonon coupling in a deformable lattice and from a distribution of intrinsic trap states. These hybrids provide a tunable platform for combining the facile processability of organic materials with the structural definition of crystalline, inorganic solids.

6.
ACS Nano ; 8(4): 3461-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24621014

RESUMO

Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

7.
J Am Chem Soc ; 134(48): 19661-8, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126491

RESUMO

We study charge recombination via triplet excited states in donor/acceptor organic solar cells and find that, contrary to intuition, high internal quantum efficiency (IQE) can be obtained in polymer/fullerene blend devices even when the polymer triplet state is significantly lower in energy than the intermolecular charge transfer (CT) state. Our model donor system comprises the copolymer PIDT-PhanQ: poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline), which when blended with phenyl-C(71)-butyric acid methyl ester (PC(71)BM) is capable of achieving power conversion efficiencies of 6.0% and IQE ≈ 90%, despite the fact that the polymer triplet state lies 300 meV below the interfacial CT state. However, as we push the open circuit voltage (V(OC)) higher by tailoring the fullerene reduction potential, we observe signatures of a new recombination loss process near V(OC) = 1.0 V that we do not observe for PCBM-based devices. Using photoinduced absorption and photoluminescence spectroscopy, we show that a new recombination path opens via the fullerene triplet manifold as the energy of the lowest CT state approaches the energy of the fullerene triplet. This pathway appears active even in cases where direct recombination via the polymer triplet remains thermodynamically accessible. These results suggest that kinetics, as opposed to thermodynamics, can dominate recombination via triplet excitons in these blends and that optimization of charge separation and kinetic suppression of charge recombination may be fruitful paths for the next generation of panchromatic organic solar cell materials with high V(OC) and J(SC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...