Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 88: 78-85, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30780000

RESUMO

Viscoelasticity is a fundamental property of virtually all biological materials, and proteinaceous, fibrous materials that constitute the extracellular matrix (ECM) are no exception. Viscoelasticity may be particularly important in the ECM since cells can apply mechanical stress resulting from cell contractility over very long periods of time. However, measurements of ECM fiber response to long-term constant force loading are scarce, despite the increasing recognition that mechanical strain regulates the biological function of some ECM fibers. We developed a dual micropipette system that applies constant force to single fibers for up to 8 h. We utilized this system to study the time dependent response of fibronectin (Fn) fibers to constant force, as Fn fibers exhibit tremendous extensibility before mechanical failure as well as strain dependent alterations in biological properties. These data demonstrate the Fn fibers continue to stretch under constant force loading for at least 8 h and that this long-term creep results in plastic deformation of Fn fibers, in contrast to elastic deformation of Fn fibers under short-term, but fast loading rate extension. These data demonstrate that physiologically-relevant loading may impart mechanical features to Fn fibers by switching them into an extended state that may have altered biological functions. STATEMENT OF SIGNIFICANCE: Measurements of extracellular matrix (ECM) fiber response to constant force loading are scarce, so we developed a novel technique for applying constant force to single ECM fibers. We used this technique to measure constant force creep of fibronectin fibers since these fibers have been shown to be mechanotransducers whose functions can be altered by mechanical strain. We found that fibronectin fibers creep under constant force loading for the duration of the experiment and that this creep behavior resembles a power law. Furthermore, we found that constant force creep results in plastic deformation of the fibers, which suggests that the mechanobiological switching of fibronectin can only occur once after long-term loading.


Assuntos
Matriz Extracelular/química , Fibronectinas/química , Teste de Materiais , Estresse Mecânico , Elasticidade , Viscosidade
2.
PLoS Comput Biol ; 8(12): e1002845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300425

RESUMO

The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models.


Assuntos
Matriz Extracelular/química , Fibronectinas/química , Microscopia/métodos , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica
3.
Biophys J ; 101(7): 1740-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21961600

RESUMO

The extracellular matrix contains components with remarkable mechanical properties, including fibronectin (Fn) fibers with extensibilities of >700% strain. We utilized what we consider a novel technique to quantify the extent of molecular unfolding that contributes to Fn fiber extension, and we compared this behavior with stochastic models of Fn fibers with different molecular arrangements. In vitro unfolding as a function of strain was measured by fluorescently labeling cysteines in modules FnIII7 and III15 in artificial Fn fibers. A calibration technique we also consider novel made it possible to demonstrate that 44% of cysteines in these modules were exposed in Fn fibers strained to 421% extension, up from 8% exposure without strain. In silico unfolding was measured by applying a constant strain rate to a fiber represented by a network of wormlike chain springs, each representing an individual Fn molecule. Unfolding rates were calculated with a tension-dependent stochastic model applied to FnIII modules in each molecule. A comparison of these approaches revealed that only a molecular arrangement permitting unequal mechanical loading of Fn molecules recapitulates in vitro unfolding. These data have implications for Fn-dependent mechanotransduction and give insight into how the molecular architecture of natural materials permits such remarkable extensibility.


Assuntos
Fibronectinas/química , Desdobramento de Proteína , Biologia Computacional , Cisteína , Humanos , Método de Monte Carlo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...