Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(21): 6209-6227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899584

RESUMO

The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under "space-for-time substitution", the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996-2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.


Assuntos
Aves , Mudança Climática , Animais , Aves/fisiologia , Ecossistema , Dinâmica Populacional , Estações do Ano , Temperatura
2.
Data Brief ; 28: 104888, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31886347

RESUMO

Remote sensing of vegetation provides important information for ecological applications and environmental assessments. The association between vegetation composition and structure with its spectral signal can most fully be assessed with hyperspectral data. Particularly field spectroscopy data can improve such understanding as the spectral data can be linked with the vegetation under consideration without the geographic registration uncertainties of aerial or satellite imagery. The data provided in this article contain field spectroscopy measurements from non-arable, grass-dominated objects on four farms in an intensively used agricultural landscape in the South-East of the UK. Detailed data on the plant species composition of the objects are also supplied with this article to support further analysis. Reuse potential includes linking the vegetation data with the spectral response using spectral unmixing techniques to map certain plant species or including the field spectroscopy data in a larger study with data from a wider area. This data article is related to the paper 'Classifying grass-dominated habitats from remotely sensed data: the influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution' (Bradter et al., 2019) in which the ability to classify the recorded vegetation from the field spectroscopy data was analysed.

3.
Sci Total Environ ; 711: 134584, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818561

RESUMO

Detailed maps of vegetation facilitate spatial conservation planning. Such information can be difficult to map from remotely sensed data with the detail (thematic resolution) required for ecological applications. For grass-dominated habitats in the South-East of the UK, it was evaluated which of the following choices improved classification accuracies at various thematic resolutions: 1) Hyperspectral data versus data with a reduced spectral resolution of eight and 13 bands, which were simulated from the hyperspectral data. 2) A vegetation classification system using a detailed description of vegetation (sub)-communities (the British National Vegetation Classification, NVC) versus clustering based on the dominant plant species (Dom-Species). 3) The month of imagery acquisition. Hyperspectral data produced the highest accuracies for vegetation away from edges using the NVC (84-87%). Simulated 13-band data performed also well (83-86% accuracy). Simulated 8-band data performed poorer at finer thematic resolutions (77-78% accuracy), but produced accuracies similar to those from simulated 13-band or hyperspectral data for coarser thematic resolutions (82-86%). Grouping vegetation by NVC (84-87% accuracy for hyperspectral data) usually achieved higher accuracies compared to Dom-Species (81-84% for hyperspectral data). Highest discrimination rates were achieved around the time vegetation was fully developed. The results suggest that using a detailed description of vegetation (sub)-communities instead of one based on the dominating species can result in more accurate mapping. The NVC may reflect differences in site conditions in addition to differences in the composition of dominant species, which may benefit vegetation classification. The results also suggest that using hyperspectral data or the 13-band multispectral data can help to achieve the fine thematic resolutions that are often required in ecological applications. Accurate vegetation maps with a high thematic resolution can benefit a range of applications, such as species and habitat conservation.


Assuntos
Poaceae , Ecossistema , Monitoramento Ambiental , Plantas
4.
ISPRS J Photogramm Remote Sens ; 109: 165-177, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26664131

RESUMO

Natural and semi-natural habitats in agricultural landscapes are likely to come under increasing pressure with the global population set to exceed 9 billion by 2050. These non-cropped habitats are primarily made up of trees, hedgerows and grassy margins and their amount, quality and spatial configuration can have strong implications for the delivery and sustainability of various ecosystem services. In this study high spatial resolution (0.5 m) colour infrared aerial photography (CIR) was used in object based image analysis for the classification of non-cropped habitat in a 10,029 ha area of southeast England. Three classification scenarios were devised using 4 and 9 class scenarios. The machine learning algorithm Random Forest (RF) was used to reduce the number of variables used for each classification scenario by 25.5 % ± 2.7%. Proportion of votes from the 4 class hierarchy was made available to the 9 class scenarios and where the highest ranked variables in all cases. This approach allowed for misclassified parent objects to be correctly classified at a lower level. A single object hierarchy with 4 class proportion of votes produced the best result (kappa 0.909). Validation of the optimum training sample size in RF showed no significant difference between mean internal out-of-bag error and external validation. As an example of the utility of this data, we assessed habitat suitability for a declining farmland bird, the yellowhammer (Emberiza citronella), which requires hedgerows associated with grassy margins. We found that ∼22% of hedgerows were within 200 m of margins with an area >183.31 m2. The results from this analysis can form a key information source at the environmental and policy level in landscape optimisation for food production and ecosystem service sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...