Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(18): 9036-9046, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38630057

RESUMO

Filamentous fungi are known to secrete biochemicals that drive the synthesis of nanoparticles (NPs) that vary in composition, size, and shape; a process deemed mycosynthesis. Following the introduction of precursor salts directly to the fungal mycelia or their exudates, mycosynthesis proceeds at ambient temperature and pressure, and near neutral pH, presenting significant energy and cost savings over traditional chemical or physical approaches. The mycosynthesis of zinc oxide (ZnO) NPs by various fungi exhibited a species dependent morphological preference for the resulting NPs, suggesting that key differences in the biochemical makeup of their individual exudates may regulate the controlled nucleation and growth of these different morphologies. Metabolomics and proteomics of the various fungal exudates suggest that metal chelators, such as hexamethylenetetramine, present in high concentrations in exudates of Aspergillus versicolor are critical for the production dense, well-formed, spheroid nanoparticles. The results also corroborate that the proteinaceous material in the production of ZnO NPs serves as a surface modifier, or protein corona, preventing excessive coagulation of the NPs. Collectively, these findings suggest that NP morphology is regulated by the small molecule metabolites, and not proteins, present in fungal exudates, establishing a deeper understanding of the factors and mechanism underlying mycosynthesis of NPs.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Aspergillus/metabolismo , Aspergillus/química , Metabolômica , Proteômica , Nanopartículas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química
2.
Angew Chem Int Ed Engl ; 62(43): e202306572, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37682083

RESUMO

Styrene-maleic acid copolymers (SMAs), and related amphiphilic copolymers, are promising tools for isolating and studying integral membrane proteins in a native-like state. However, they do not exhibit this ability universally, as several reports have found that SMAs and related amphiphilic copolymers show little to no efficiency when extracting specific membrane proteins. Recently, it was discovered that esterified SMAs could enhance the selective extraction of trimeric Photosystem I from the thylakoid membranes of thermophilic cyanobacteria; however, these polymers are susceptible to saponification that can result from harsh preparation or storage conditions. To address this concern, we herein describe the development of α-olefin-maleic acid copolymers (αMAs) that can extract trimeric PSI from cyanobacterial membranes with the highest extraction efficiencies observed when using any amphiphilic copolymers, including diisobutylene-co-maleic acid (DIBMA) and functionalized SMA samples. Furthermore, we will show that αMAs facilitate the formation of photosystem I-containing nanodiscs that retain an annulus of native lipids and a native-like activity. We also highlight how αMAs provide an agile, tailorable synthetic platform that enables fine-tuning hydrophobicity, controllable molar mass, and consistent monomer incorporation while overcoming shortcomings of prior amphiphilic copolymers.


Assuntos
Complexo de Proteína do Fotossistema I , Estireno , Bicamadas Lipídicas , Poliestirenos , Alcenos , Proteínas de Membrana
3.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370825

RESUMO

Gleason scoring is used within a five-tier risk stratification system to guide therapeutic decisions for patients with prostate cancer. This study aimed to compare the predictive performance of routine H&E or biomarker-assisted ISUP (International Society of Urological Pathology) grade grouping for assessing the risk of biochemical recurrence (BCR) and clinical recurrence (CR) in patients with prostate cancer. This retrospective study was an assessment of 114 men with prostate cancer who provided radical prostatectomy samples to the Australian Prostate Cancer Bioresource between 2006 and 2014. The prediction of CR was the primary outcome (median time to CR 79.8 months), and BCR was assessed as a secondary outcome (median time to BCR 41.7 months). The associations of (1) H&E ISUP grade groups and (2) modified ISUP grade groups informed by the Appl1, Sortilin and Syndecan-1 immunohistochemistry (IHC) labelling were modelled with BCR and CR using Cox proportional hazard approaches. IHC-assisted grading was more predictive than H&E for BCR (C-statistic 0.63 vs. 0.59) and CR (C-statistic 0.71 vs. 0.66). On adjusted analysis, IHC-assisted ISUP grading was independently associated with both outcome measures. IHC-assisted ISUP grading using the biomarker panel was an independent predictor of individual BCR and CR. Prospective studies are needed to further validate this biomarker technology and to define BCR and CR associations in real-world cohorts.

4.
Small ; 19(15): e2205799, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587980

RESUMO

Filamentous fungi can synthesize a variety of nanoparticles (NPs), a process referred to as mycosynthesis that requires little energy input, do not require the use of harsh chemicals, occurs at near neutral pH, and do not produce toxic byproducts. While NP synthesis involves reactions between metal ions and exudates produced by the fungi, the chemical and biochemical parameters underlying this process remain poorly understood. Here, the role of fungal species and precursor salt on the mycosynthesis of zinc oxide (ZnO) NPs is investigated. This data demonstrates that all five fungal species tested are able to produce ZnO structures that can be morphologically classified into i) well-defined NPs, ii) coalesced/dissolving NPs, and iii) micron-sized square plates. Further, species-dependent preferences for these morphologies are observed, suggesting potential differences in the profile or concentration of the biochemical constituents in their individual exudates. This data also demonstrates that mycosynthesis of ZnO NPs is independent of the anion species, with nitrate, sulfate, and chloride showing no effect on NP production. These results enhance the understanding of factors controlling the mycosynthesis of ceramic NPs, supporting future studies that can enable control over the physical and chemical properties of NPs formed through this "green" synthesis method.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Nanopartículas/química , Metais , Íons , Nanopartículas Metálicas/química
5.
Pathology ; 55(1): 40-51, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36089417

RESUMO

Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients. Online gene expression databases were interrogated and a pathogenic pathway for prostate cancer was identified. The protein expression of key genes in the pathway, including adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (Appl1), Sortilin and Syndecan-1, was examined by immunohistochemistry (IHC) in a pilot study of 29 patients with prostate cancer, using monoclonal antibodies designed against unique epitopes. Appl1, Sortilin, and Syndecan-1 expression was first assessed in a tissue microarray cohort of 112 patient samples, demonstrating that the monoclonal antibodies clearly illustrate gland morphologies. To determine the impact of a novel IHC-assisted interpretation (the utility of Appl1, Sortilin, and Syndecan-1 labelling as a panel) of Gleason grading, versus standard haematoxylin and eosin (H&E) Gleason grade assignment, a radical prostatectomy sample cohort comprising 114 patients was assessed. In comparison to H&E, the utility of the biomarker panel reduced subjectivity in interpretation of prostate cancer tissue morphology and improved the reliability of pathology assessment, resulting in Gleason grade redistribution for 41% of patient samples. Importantly, for equivocal IHC-assisted labelling and H&E staining results, the cancer morphology interpretation could be more accurately applied upon re-review of the H&E tissue sections. This study addresses a key issue in the field of prostate cancer pathology by presenting a novel combination of three biomarkers and has the potential to transform clinical pathology practice by standardising the interpretation of the tissue morphology.


Assuntos
Neoplasias da Próstata , Sindecana-1 , Humanos , Masculino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anticorpos Monoclonais , Gradação de Tumores , Projetos Piloto , Neoplasias da Próstata/metabolismo , Reprodutibilidade dos Testes , Sindecana-1/metabolismo
6.
Biomacromolecules ; 23(11): 4749-4755, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36219772

RESUMO

The detergent-free extraction of integral membrane proteins using styrene-maleic acid copolymers (SMAs) has shown promise as a potentially effective technique to isolate proteins in a more native-like conformation. As the field continues to develop, the protein selectivity and extraction efficiency of many analogues of traditional SMAs are being investigated. Recently, we discovered that the monoesterification of SMAs with alkoxy ethoxylate sidechains drastically affects the bioactivity of these copolymers in the extraction of photosystem I from the cyanobacterium Thermosynechococcus elongatus. However, subsequent investigations also revealed that the conditions under which these esterified SMA polymer analogues are prepared, purified, and stored can alter the structure of the alkoxy ethoxylate-functionalized SMA and perturb the protein extraction process. Herein, we demonstrate that the basic conditions required to solubilize SMA analogues may lead to deleterious saponification side reactions, cleaving the sidechains of an esterified SMA and dramatically decreasing its efficacy for protein extraction. We found that this process is highly dependent on temperature, with polymer samples being prepared and stored at lower temperatures exhibiting significantly fewer saponification side reactions. Furthermore, the effects of small-molecule impurities and exposure to light were also investigated, both of which are shown to have significant effects on the polymer structure and/or protein extraction process.


Assuntos
Maleatos , Proteínas de Membrana , Proteínas de Membrana/química , Maleatos/química , Poliestirenos/química , Polímeros/química
7.
Biochim Biophys Acta Bioenerg ; 1863(7): 148596, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853496

RESUMO

The use of styrene-maleic acid copolymers (SMAs) to produce membrane protein-containing nanodiscs without the initial detergent isolation has gained significant interest over the last decade. We have previously shown that a Photosystem I SMALP from the thermophilic cyanobacterium, Thermosynechococcus elongatus (PSI-SMALP), has much more rapid energy transfer and charge separation in vitro than detergent isolated PSI complexes. In this study, we have utilized small-angle neutron scattering (SANS) to better understand the geometry of these SMALPs. These techniques allow us to investigate the size and shape of these particles in their fully solvated state. Further, the particle's proteolipid core and detergent shell or copolymer belt can be interrogated separately using contrast variation, a capability unique to SANS. Here we report the dimensions of the Thermosynechococcus elongatus PSI-SMALP containing a PSI trimer. At ~1.5 MDa, PSI-SMALP is the largest SMALP to be isolated; our lipidomic analysis indicates it contains ~1300 lipids/per trimeric particle, >40-fold more than the PSI-DDM particle and > 100 fold more than identified in the 1JB0 crystal structure. Interestingly, the lipid composition to the PSI trimer in the PSI-SMALP differs significantly from bulk thylakoid composition, being enriched ~50 % in the anionic sulfolipid, SQDG. Finally, utilizing the contrast match point for the SMA 1440 copolymer, we also can observe the ~1 nm SMA copolymer belt surrounding this SMALP for the first time, consistent with most models of SMA organization.


Assuntos
Cianobactérias , Lipidômica , Detergentes/química , Espalhamento a Baixo Ângulo , Thermosynechococcus
8.
Transl Oncol ; 14(12): 101229, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592589

RESUMO

Tumour metastasis accounts for over 90% of cancer related deaths. The platelet is a key blood component, which facilitates efficient metastasis. This study aimed to understand the molecular mechanisms involved in tumour-platelet cell interactions. The interaction between cancer cells and platelets was examined in 15 epithelial cell lines, representing 7 cancer types. Gene expression analysis of EMT-associated and cancer stemness genes was performed by RT-PCR. Whole transcriptome analysis (WTA) was performed using Affymetrix 2.0ST arrays on a platelet co-cultured ovarian model. Platelet adhesion and activation occurred across all tumour types. WTA identified increases in cellular movement, migration, invasion, adhesion, development, differentiation and inflammation genes and decreases in processes associated with cell death and survival following platelet interaction. Increased invasive capacity was also observed in a subset of cell lines. A cross-comparison with a platelet co-cultured mouse model identified 5 common altered genes; PAI-1, PLEK2, CD73, TNC, and SDPR. Platelet cancer cell interactions are a key factor in driving the pro-metastatic phenotype and appear to be mediated by 5 key genes which have established roles in metastasis. Targeting these metastasis mediators could improve cancer patient outcomes.

9.
Biomacromolecules ; 22(6): 2544-2553, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34038122

RESUMO

Amphiphilic styrene-maleic acid copolymers (SMAs) have been shown to effectively extract membrane proteins surrounded by an annulus of native membrane lipids via the formation of nanodiscs. Recent reports have shown that 2-butoxyethanol-functionalized SMA derivatives promote the extraction of membrane proteins from thylakoid membranes, whereas unfunctionalized SMA is essentially ineffective. However, it is unknown how the extent of functionalization and identity of sidechains impact protein solubilization and specificity. Herein, we show that the monoesterification of an SMA polymer with hydrophobic alkoxy ethoxylate sidechains leads to an increased solubilization efficiency (SE) of trimeric photosystem I (PSI) from the membranes of cyanobacterium Thermosynechococcus elongatus. The specific SMA polymer used in this study, PRO 10235, cannot encapsulate single PSI trimers from this cyanobacterium; however, as it is functionalized with alkoxy ethoxylates of increasing alkoxy chain length, a clear increase in the trimeric PSI SE is observed. Furthermore, an exponential increase in the SE is observed when >50% of the maleic acid repeat units are monoesterified with long alkoxy ethoxylates, suggesting that the PSI extraction mechanism is highly dependent on both the number and length of the attached side chains.


Assuntos
Maleatos , Tilacoides , Interações Hidrofóbicas e Hidrofílicas , Polímeros
10.
Mol Cancer ; 20(1): 59, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789677

RESUMO

Cancer cells that transit from primary tumours into the circulatory system are known as circulating tumour cells (CTCs). These cancer cells have unique phenotypic and genotypic characteristics which allow them to survive within the circulation, subsequently extravasate and metastasise. CTCs have emerged as a useful diagnostic tool using "liquid biopsies" to report on the metastatic potential of cancers. However, CTCs by their nature interact with components of the blood circulatory system on a constant basis, influencing both their physical and morphological characteristics as well as metastatic capabilities. These properties and the associated molecular profile may provide critical diagnostic and prognostic capabilities in the clinic. Platelets interact with CTCs within minutes of their dissemination and are crucial in the formation of the initial metastatic niche. Platelets and coagulation proteins also alter the fate of a CTC by influencing EMT, promoting pro-survival signalling and aiding in evading immune cell destruction. CTCs have the capacity to directly hijack immune cells and utilise them to aid in CTC metastatic seeding processes. The disruption of CTC clusters may also offer a strategy for the treatment of advance staged cancers. Therapeutic disruption of these heterotypical interactions as well as direct CTC targeting hold great promise, especially with the advent of new immunotherapies and personalised medicines. Understanding the molecular role that platelets, immune cells and the coagulation cascade play in CTC biology will allow us to identify and characterise the most clinically relevant CTCs from patients. This will subsequently advance the clinical utility of CTCs in cancer diagnosis/prognosis.


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Animais , Biomarcadores , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/etiologia , Comunicação Celular/genética , Comunicação Celular/imunologia , Gerenciamento Clínico , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Humanos , Neoplasias/sangue , Neoplasias/complicações , Neoplasias/etiologia , Neoplasias/patologia
11.
Cell Rep ; 34(11): 108863, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33691089

RESUMO

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Imunidade/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/imunologia , Caspases/imunologia , Caspases/metabolismo , Feminino , Humanos , Linfopenia/imunologia , Linfopenia/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Adulto Jovem
12.
NPJ Syst Biol Appl ; 6(1): 34, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106503

RESUMO

How the network around ROS protects against oxidative stress and Parkinson's disease (PD), and how processes at the minutes timescale cause disease and aging after decades, remains enigmatic. Challenging whether the ROS network is as complex as it seems, we built a fairly comprehensive version thereof which we disentangled into a hierarchy of only five simpler subnetworks each delivering one type of robustness. The comprehensive dynamic model described in vitro data sets from two independent laboratories. Notwithstanding its five-fold robustness, it exhibited a relatively sudden breakdown, after some 80 years of virtually steady performance: it predicted aging. PD-related conditions such as lack of DJ-1 protein or increased α-synuclein accelerated the collapse, while antioxidants or caffeine retarded it. Introducing a new concept (aging-time-control coefficient), we found that as many as 25 out of 57 molecular processes controlled aging. We identified new targets for "life-extending interventions": mitochondrial synthesis, KEAP1 degradation, and p62 metabolism.


Assuntos
Envelhecimento , Modelos Biológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Medicina de Precisão , Espécies Reativas de Oxigênio/metabolismo , Biologia Computacional , Humanos , Terapia de Alvo Molecular , Estresse Oxidativo , Doença de Parkinson/fisiopatologia
13.
medRxiv ; 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32935120

RESUMO

It remains unclear why some patients infected with SARS-CoV-2 readily resolve infection while others develop severe disease. To address this question, we employed a novel assay to interrogate immune-metabolic programs of T cells and myeloid cells in severe and recovered COVID-19 patients. Using this approach, we identified a unique population of T cells expressing high H3K27me3 and the mitochondrial membrane protein voltage-dependent anion channel (VDAC), which were expanded in acutely ill COVID-19 patients and distinct from T cells found in patients infected with hepatitis c or influenza and in recovered COVID-19. Increased VDAC was associated with gene programs linked to mitochondrial dysfunction and apoptosis. High-resolution fluorescence and electron microscopy imaging of the cells revealed dysmorphic mitochondria and release of cytochrome c into the cytoplasm, indicative of apoptosis activation. The percentage of these cells was markedly increased in elderly patients and correlated with lymphopenia. Importantly, T cell apoptosis could be inhibited in vitro by targeting the oligomerization of VDAC or blocking caspase activity. In addition to these T cell findings, we also observed a robust population of Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC), exclusively found in the acutely ill COVID-19 patients and not the other viral diseases. Finally, we revealed a unique population of monocytic MDSC (M-MDSC) expressing high levels of carnitine palmitoyltransferase 1a (CPT1a) and VDAC. The metabolic phenotype of these cells was not only highly specific to COVID-19 patients but the presence of these cells was able to distinguish severe from mild disease. Overall, the identification of these novel metabolic phenotypes not only provides insight into the dysfunctional immune response in acutely ill COVID-19 patients but also provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel metabolic therapeutic regimens.

14.
Dev Cell ; 53(6): 627-645.e7, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32504557

RESUMO

Mitochondrial outer membrane permeabilization (MOMP) is a core event in apoptosis signaling. However, the underlying mechanism of BAX and BAK pore formation remains incompletely understood. We demonstrate that mitochondria are globally and dynamically targeted by endolysosomes (ELs) during MOMP. In response to pro-apoptotic BH3-only protein signaling and pharmacological MOMP induction, ELs increasingly form transient contacts with mitochondria. Subsequently, ELs rapidly accumulate within the entire mitochondrial compartment. This switch-like accumulation period temporally coincides with mitochondrial BAX clustering and cytochrome c release. Remarkably, interactions of ELs with mitochondria control BAX recruitment and pore formation. Knockdown of Rab5A, Rab5C, or USP15 interferes with EL targeting of mitochondria and functionally uncouples BAX clustering from cytochrome c release, while knockdown of the Rab5 exchange factor Rabex-5 impairs both BAX clustering and cytochrome c release. Together, these data reveal that EL-mitochondrial inter-organelle communication is an integral regulatory component of functional MOMP execution during cellular apoptosis signaling.


Assuntos
Apoptose , Endossomos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Células MCF-7 , Transdução de Sinais , Proteases Específicas de Ubiquitina/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
15.
Langmuir ; 36(14): 3970-3980, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32207953

RESUMO

Styrene-maleic acid (SMA) copolymers have recently gained attention for their ability to facilitate the detergent-free solubilization of membrane protein complexes and their native boundary lipids into polymer-encapsulated, nanosized lipid particles, referred to as SMALPs. However, the interfacial interactions between SMA and lipids, which dictate the mechanism, efficiency, and selectivity of lipid and membrane protein extraction, are barely understood. Our recent finding has shown that SMA 1440, a chemical derivative of the SMA family with a functionalized butoxyethanol group, was most active in galactolipid-rich membranes, as opposed to phospholipid membranes. In the present work, we have performed X-ray reflectometry (XRR) and neutron reflectometry (NR) on the lipid monolayers at the liquid-air interface followed by the SMA copolymer adsorption. XRR and Langmuir Π-A isotherms captured the fluidifying effect of galactolipids, which allowed SMA copolymers to infiltrate easily into the lipid membranes. NR results revealed the detailed structural arrangement of SMA 1440 copolymers within the membranes and highlighted the partition of butoxyethanol group into the lipid tail region. This work allows us to propose a possible mechanism for the membrane solubilization by SMA.

16.
Bio Protoc ; 10(2): e3502, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654729

RESUMO

Extracellular vesicles (EVs) are produced by all domains of life including Bacteria, Archaea and Eukarya. EVs are critical for cellular physiology and contain varied cargo: virulence factors, cell wall remodeling enzymes, extracellular matrix components and even nucleic acids and metabolites. While various protocols for isolating EVs have been established for mammalian cells, the field is actively developing tools to study EVs in other organisms. In this protocol we describe our methods to perform density gradient purification of EVs in bacterial cells, allowing for separation of EV subpopulations, followed by protection assays for EV cargo characterization. Furthermore, we devised a protocol which incorporates a fluorescent conjugate of fatty acids into EVs, the first to allow live-cell EV tracking to observe release of EVs, including during infection of mammalian cells by pathogenic bacteria. These protocols are powerful tools for EV researchers as they enable the observation of EV release and the study of the mechanisms of their formation and release.

17.
Biophys J ; 118(2): 337-351, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31882247

RESUMO

Cyanobacterial photosystem I (PSI) functions as a light-driven cyt c6-ferredoxin/oxidoreductase located in the thylakoid membrane. In this work, the energy and charge transfer processes in PSI complexes isolated from Thermosynechococcus elongatus via conventional n-dodecyl-ß-D-maltoside solubilization (DM-PSI) and a, to our knowledge, new detergent-free method using styrene-maleic acid copolymers (SMA-PSI) have been investigated by pump-to-probe femtosecond laser spectroscopy. In DM-PSI preparations excited at 740 nm, the excitation remained localized on the long-wavelength chlorophyll forms within 0.1-20 ps and revealed little or no charge separation and oxidation of the special pair, P700. The formation of ion-radical pair P700+A1- occurred with a characteristic time of 36 ps, being kinetically controlled by energy transfer from the long-wavelength chlorophyll to P700. Quite surprisingly, the detergent-free SMA-PSI complexes upon excitation by these long-wave pulses undergo an ultrafast (<100 fs) charge separation in ∼45% of particles. In the remaining complexes (∼55%), the energy transfer to P700 occurred at ∼36 ps, similar to the DM-PSI. Both isolation methods result in a trimeric form of PSI, yet the SMA-PSI complexes display a heterogenous kinetic behavior. The much faster rate of charge separation suggests the existence of an ultrafast pathway for charge separation in the SMA-PSI that may be disrupted during detergent isolation.


Assuntos
Cianobactérias/enzimologia , Processos Fotoquímicos , Complexo de Proteína do Fotossistema I/metabolismo , Cinética
18.
RSC Adv ; 9(54): 31781-31796, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527920

RESUMO

Photosystem I (PSI) from the thermophilic cyanobacterium Thermosynechococcus elongatus (Te) is the largest membrane protein complex to have had its structure solved by X-ray diffraction. This trimeric complex has 36 protein subunits, over 380 non-covalently bound cofactors and a molecular weight of ∼1.2 MDa. Previously, it has been isolated and characterized in a detergent micelle using the non-ionic detergent n-dodecyl-ß-d-maltoside (DDM). We have now succeeded in isolating this complex without the use of detergents, using styrene-maleic acid (SMA) alternating copolymer. Intriguingly, a partially esterified copolymer formulation (SMA 1440, Cray Valley) was found to be most efficient in cyanobacterial thylakoid membranes. A host of biochemical, biophysical and functional assays have been applied to characterize this non-detergent form of PSI, referred to as a SMA Lipid Particle (SMALP). The PSI-SMALP has a lower sedimentation coefficient compared to PSI-DDM, suggesting decreased density or a more extended particle shape. We show the 77 K fluorescence maximum for PSI is red shifted in PSI-SMALP compared to PSI-DDM, suggesting a more native orientation of PsaA/B associated chlorophyll. We report that PSI-SMALPs are functional despite the selective loss of one transmembrane subunit, PsaF. This loss may reflect a more labile interaction of the PSI core and PsaF, or a selective displacement during copolymer insertion and/or assembly. PSI-SMALP exhibited decreased reduction kinetics with native recombinant cytochromes c6, while non-native horse heart cytochrome c shows faster reduction of PSI-SMALP compared to PSI-DDM. This is the largest membrane protein isolated using SMA copolymers, and this study expands the potential use of this approach for the isolation and characterization of large supramolecular complexes.

19.
J Biol Chem ; 294(4): 1202-1217, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504226

RESUMO

Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secrete extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release, and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis. Here we report that L. monocytogenes produces EVs with diameters ranging from 20 to 200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multiomics we characterized protein, lipid, and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins. Using immunogold EM we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity.


Assuntos
Toxinas Bacterianas/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Hemólise/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Macrófagos/metabolismo , Fatores de Virulência/metabolismo , Animais , Células Cultivadas , Vesículas Extracelulares/microbiologia , Humanos , Listeria monocytogenes/patogenicidade , Células MCF-7 , Macrófagos/microbiologia , Camundongos , Ovinos
20.
Biomicrofluidics ; 12(2): 024101, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29576833

RESUMO

In this article, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%-16% reduction in area per lipid for DOPC and POPC, respectively. Finally, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupture potential, and specific capacitance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...