Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 141978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608774

RESUMO

Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.


Assuntos
Salinidade , Animais , Mudança Climática , Ecossistema , Poluentes Químicos da Água/toxicidade , Temperatura , Anuros/fisiologia , Estresse Fisiológico , Lagoas , Cloreto de Sódio/toxicidade
2.
Environ Pollut ; 296: 118757, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973378

RESUMO

Organisms that rely on aquatic habitats in roaded landscapes face a growing array of consequences from pollution, especially due to freshwater salinization. Critically, these consequences can vary from population to population depending on exposure histories and evolutionary responses. Prior studies using transplant and common garden experiments have found that aquatic-stage wood frogs (Rana sylvatica) from roadside populations are less fit in the wild and more sensitive to road salt than their counterparts from woodland populations away from roads. While this pattern is consistent with local maladaptation, unresolved insights into the timing and duration of these effects leave open the possibility that negative outcomes are countered during development. Here, we asked whether the survival disadvantage of roadside wood frogs is stage-specific, and whether this disadvantage reverses before metamorphosis. We used a common garden road salt exposure experiment and a field-based reciprocal transplant experiment to examine differences in survival across life-history stage and with respect to population type. In each experimental context, roadside embryos showed a survival disadvantage relative to woodland embryos, and this disadvantage was not reversed prior to metamorphosis. We also found that salt exposure delayed metamorphosis more strongly for roadside than woodland populations. Together, these results suggest that local maladaptation in aquatic-stage wood frogs is driven by embryonic sensitivity to salt and that roadside populations are further compromised by delayed developmental rates. Future studies should consider which embryonic traits fail to adapt to salt toxicity, and how those traits might correlate with terrestrial trait variation.


Assuntos
Lagoas , Ranidae , Animais , Larva , Metamorfose Biológica , Cloreto de Sódio
3.
Environ Pollut ; 292(Pt B): 118441, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728326

RESUMO

Across the planet, winter de-icing practices have caused secondary salinization of freshwater habitats. Many amphibians are vulnerable because of permeable skin and reliance on small ponds, where salinity can be high. Early developmental stages of amphibians are especially sensitive to salt, and larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. Though ionoregulation in amphibian gills is generally understood, the role of gill morphology remains poorly described. Yet gill structure should affect ionoregulatory capacity, for instance in terms of available surface area. As larval amphibian gills also play critical roles in gas exchange and foraging, changes in gill morphology from salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used an exposure experiment to quantify salinity effects on larval gill morphology in wood frogs (Rana sylvatica). We measured a suite of morphological traits on gill tufts-where ionoregulation and gas exchange occur-and on gill filters used in feeding. Larvae raised in elevated salinity developed larger gill tufts but with lower surface area to volume ratio. Epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, likely reducing feeding efficiency. Many morphological gill traits responded quadratically, suggesting that salinity might induce plasticity in gills at intermediate concentrations until energetic demands exceed plasticity. Together, these changes likely diminish ionoregulatory and respiratory functionality of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in aquatic environment from a widespread pollutant appears to generate a suite of consequences via changes in gill morphology. Critically, these changes in traits likely compound the severity of fitness impacts in populations dwelling in salinized environments, whereby ionoregulatory energetic demands should increase respiratory and foraging demands, but in individuals who possess structures poorly adapted for these functions.


Assuntos
Brânquias , Cloreto de Sódio , Animais , Humanos , Larva , Osmorregulação , Ranidae
4.
Evol Appl ; 14(5): 1213-1215, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025761

RESUMO

When restoring gene flow for conservation management, genetic variation should be viewed along a continuum of genetic divergence between donor and recipient populations. On the one hand, maintaining local adaptation (low divergence between donors and recipients) can enhance conservation success in the short term. On the other hand, reducing local adaptation in the short term by increasing genetic diversity (high divergence between some donors and recipients) might have better long-term success in the face of changing environmental conditions. Both Hoffman et al. (2020) and a paper we previously published in a Special Issue on Maladaptation in Applied Conservation (Derry et al., 2019) provide frameworks and syntheses for how best to apply conservation strategies in light of genetic variation and adaptation. A key difference between these two studies was that whereas Derry et al. (2019) performed a quantitative meta-analysis, Hoffman et al. (2020) relied on case studies and theoretical considerations, yielding slightly different conclusions. We here provide a summary of the two studies and contrast of the main similarities and differences between them, while highlighting terminology used to describe and explain main concepts.

5.
Am Nat ; 194(4): 495-515, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31490718

RESUMO

Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.


Assuntos
Adaptação Biológica , Evolução Biológica , Fenômenos Ecológicos e Ambientais , Aptidão Genética , Seleção Genética
6.
Evol Appl ; 12(7): 1229-1242, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417611

RESUMO

Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts - where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world.

7.
Evol Appl ; 12(7): 1287-1304, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417615

RESUMO

Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.

8.
Evol Appl ; 12(7): 1360-1370, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31417620

RESUMO

Human-modified habitats rarely yield outcomes that are aligned with conservation ideals. Landscapes that are subdivided by roads are no exception, precipitating negative impacts on populations due to fragmentation, pollution, and road kill. Although many populations in human-modified habitats show evidence for local adaptation, rarely does environmental change yield outright benefits for populations of conservation interest. Contrary to expectations, we report surprising benefits experienced by amphibian populations breeding and dwelling in proximity to roads. We show that roadside populations of the wood frog, Rana sylvatica, exhibit better locomotor performance and higher measures of traits related to fitness compared with frogs from less disturbed environments located further away from roads. These results contrast previous evidence for maladaptation in roadside populations of wood frogs studied elsewhere. Our results indicate that altered habitats might not be unequivocally detrimental and at times might contribute to metapopulation success. While the frequency of such beneficial outcomes remains unknown, their occurrence underscores the complexity of inferring consequences of environmental change.

11.
Evol Appl ; 10(8): 829-838, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29151874

RESUMO

Ecotoxicological studies have provided extensive insights into the lethal and sublethal effects of environmental contaminants. These insights are critical for environmental regulatory frameworks, which rely on knowledge of toxicity for developing policies to manage contaminants. While varied approaches have been applied to ecotoxicological questions, perspectives related to the evolutionary history of focal species or populations have received little consideration. Here, we evaluate chloride toxicity from the perspectives of both macroevolution and contemporary evolution. First, by mapping chloride toxicity values derived from the literature onto a phylogeny of macroinvertebrates, fish, and amphibians, we tested whether macroevolutionary relationships across species and taxa are predictive of chloride tolerance. Next, we conducted chloride exposure tests for two amphibian species to assess whether potential contemporary evolutionary change associated with environmental chloride contamination influences chloride tolerance across local populations. We show that explicitly evaluating both macroevolution and contemporary evolution can provide important and even qualitatively different insights from those obtained via traditional ecotoxicological studies. While macroevolutionary perspectives can help forecast toxicological end points for species with untested sensitivities, contemporary evolutionary perspectives demonstrate the need to consider the environmental context of exposed populations when measuring toxicity. Accounting for divergence among populations of interest can provide more accurate and relevant information related to the sensitivity of populations that may be evolving in response to selection from contaminant exposure. Our data show that approaches accounting for and specifically examining variation among natural populations should become standard practice in ecotoxicology.

12.
Oecologia ; 184(4): 931-942, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28717880

RESUMO

While the ecological consequences of roads are well described, little is known of their role as agents of natural selection, which can shape adaptive and maladaptive responses in populations influenced by roads. This knowledge gap persists despite a growing appreciation for the influence of evolution in human-altered environments. There, insights indicate that natural selection typically results in local adaptation. Thus, populations influenced by road-induced selection should evolve fitness advantages in their local environment. Contrary to this expectation, wood frog tadpoles from roadside populations show evidence of a fitness disadvantage, consistent with local maladaptation. Specifically, in reciprocal transplants, roadside populations survive at lower rates compared to populations away from roads. A key question remaining is whether roadside environmental conditions experienced by early stage embryos induce this outcome. This represents an important missing piece in evaluating the evolutionary nature of this maladaptation pattern. Here, I address this gap using a reciprocal transplant experiment designed to test the hypothesis that embryonic exposure to roadside pond water induces a survival disadvantage. Contrary to this hypothesis, my results show that reduced survival persists when embryonic exposure is controlled. This outcome indicates that the survival disadvantage is parentally mediated, either genetically and/or through inherited environmental effects. This result suggests that roadside populations are either truly maladapted or potentially locally adapted at later life stages. I discuss these interpretations, noting that regardless of mechanism, patterns consistent with maladaptation have important implications for conservation. In light of the pervasiveness of roads, further resolution explaining maladaptive responses remains a critical challenge in conservation.


Assuntos
Adaptação Fisiológica , Exposição Ambiental , Ranidae , Seleção Genética , Aclimatação , Animais , Larva , Ranidae/fisiologia
13.
Mol Ecol ; 25(4): 849-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26756865

RESUMO

The field of landscape genetics has been evolving rapidly since its emergence in the early 2000s. New applications, techniques and criticisms of techniques appear like clockwork with each new journal issue. The developments are an encouraging, and at times bewildering, sign of progress in an exciting new field of study. However, we suggest that the rapid expansion of landscape genetics has belied important flaws in the development of the field, and we add an air of caution to this breakneck pace of expansion. Specifically, landscape genetic studies often lose sight of the fundamental principles and complex consequences of gene flow, instead favouring simplistic interpretations and broad inferences not necessarily warranted by the data. Here, we describe common pitfalls that characterize such studies, and provide practical guidance to improve landscape genetic investigation, with careful consideration of inferential limits, scale, replication, and the ecological and evolutionary context of spatial genetic patterns. Ultimately, the utility of landscape genetics will depend on translating the relationship between gene flow and landscape features into an understanding of long-term population outcomes. We hope the perspective presented here will steer landscape genetics down a more scientifically sound and productive path, garnering a field that is as informative in the future as it is popular now.


Assuntos
Ecologia/métodos , Fluxo Gênico , Genética Populacional/métodos , Geografia , Modelos Genéticos
14.
PeerJ ; 1: e163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24109548

RESUMO

Despite theoretical understanding and empirical detection of local adaptation in natural environments, our knowledge of such divergence in fragmented habitats remains limited, especially in the context of microgeographic spatial scales and contemporary time scales. I used a combination of reciprocal transplant and common garden exposure experiments to evaluate potential microgeographic divergence in a pool-breeding amphibian occupying a landscape fragmented by roads. As indicated by reduced rates of survival and increased rates of malformation, I found evidence for maladaptation in road adjacent populations. This response is in direct counterpoint to recently described local adaption by a cohabiting species of amphibian. These results suggest that while divergence might commonly follow habitat modification, the direction of its outcome cannot be generalized even in identical habitats. Further, maladaptive responses can be associated with a more generalized depression effect that transcends the local environment. Alongside recent reports, these results suggest that maladaptive responses may be an emerging consequence of human-induced environmental change. Thus future studies should carefully consider the population unit as a key level for inference.

15.
Sci Rep ; 2: 235, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355748

RESUMO

The network of roads on the landscape is vast, and contributes a suite of negative ecological effects on adjacent habitats, ranging from fragmentation to contamination by runoff. In addition to the immediate consequences faced by biota living in roaded landscapes, road effects may further function as novel agents of selection, setting the stage for contemporary evolutionary changes in local populations. Though the ecological consequences of roads are well described, evolutionary outcomes remain largely unevaluated. To address these potential responses in tandem, I conducted a reciprocal transplant experiment on early life history stages of a pool-breeding salamander. My data show that despite a strong, negative effect of roadside pools on salamander performance, populations adjacent to roads are locally adapted. This suggests that the response of species to human-altered environments varies across local populations, and that adaptive processes may mediate this response.


Assuntos
Adaptação Fisiológica , Ambystoma/fisiologia , Evolução Biológica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...