Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Genetics ; 225(2)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37682641

RESUMO

Sleep is a fundamental state of behavioral quiescence and physiological restoration. Sleep is controlled by environmental conditions, indicating a complex regulation of sleep by multiple processes. Our knowledge of the genes and mechanisms that control sleep during various conditions is, however, still incomplete. In Caenorhabditis elegans, sleep is increased when development is arrested upon starvation. Here, we performed a reverse genetic sleep screen in arrested L1 larvae for genes that are associated with metabolism. We found over 100 genes that are associated with a reduced sleep phenotype. Enrichment analysis revealed sphingolipid metabolism as a key pathway that controls sleep. A strong sleep loss was caused by the loss of function of the diacylglycerol kinase 1 gene, dgk-1, a negative regulator of synaptic transmission. Rescue experiments indicated that dgk-1 is required for sleep in cholinergic and tyraminergic neurons. The Ring Interneuron S (RIS) neuron is crucial for sleep in C. elegans and activates to induce sleep. RIS activation transients were abolished in dgk-1 mutant animals. Calcium transients were partially rescued by a reduction-of-function mutation of unc-13, suggesting that dgk-1 might be required for RIS activation by limiting synaptic vesicle release. dgk-1 mutant animals had impaired L1 arrest survival and dampened expression of the protective heat shock factor gene hsp-12.6. These data suggest that dgk-1 impairment causes broad physiological deficits. Microcalorimetry and metabolomic analyses of larvae with impaired RIS showed that RIS is broadly required for energy conservation and metabolic control, including for the presence of sphingolipids. Our data support the notion that metabolism broadly influences sleep and that sleep is associated with profound metabolic changes. We thus provide novel insights into the interplay of lipids and sleep and provide a rich resource of mutants and metabolic pathways for future sleep studies.

2.
Biogerontology ; 24(2): 225-233, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36662373

RESUMO

Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Técnicas de Silenciamento de Genes , Longevidade/fisiologia , Proteínas de Caenorhabditis elegans/genética
3.
J Inorg Biochem ; 238: 112063, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370505

RESUMO

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Heme/química , Sistema Nervoso/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232823

RESUMO

Axenically cultured C. elegans show many characteristic traits of worms subjected to dietary restriction, such as slowed development, reduced fertility, and increased stress resistance. Hence, the term axenic dietary restriction (ADR) is often applied. ADR dramatically extends the worm lifespan compared to other DR regimens such as bacterial dilution. However, the underlying molecular mechanisms still remain unclear. The primary goal of this study is to comprehensively investigate transcriptional alterations that occur when worms are subjected to ADR and to estimate the molecular and physiological changes that may underlie ADR-induced longevity. One of the most enriched clusters of up-regulated genes under ADR conditions is linked to lysosomal activity, while proteasomal genes are significantly down-regulated. The up-regulation of genes specifically involved in amino acid metabolism is likely a response to the high peptide levels found in axenic culture medium. Genes related to the integrity and function of muscles and the extracellular matrix are also up-regulated. Consistent down-regulation of genes involved in DNA replication and repair may reflect the reduced fertility phenotype of ADR worms. Neuropeptide genes are found to be largely up-regulated, suggesting a possible involvement of neuroendocrinal signaling in ADR-induced longevity. In conclusion, axenically cultured worms seem to rely on increased amino acid catabolism, relocate protein breakdown from the cytosol to the lysosomes, and do not invest in DNA maintenance but rather retain muscle integrity and the extracellular matrix. All these changes may be coordinated by peptidergic signaling.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Aminoácidos/metabolismo , Animais , Cultura Axênica , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA/metabolismo , Longevidade/genética , Lisossomos/metabolismo , Neuropeptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Biogerontology ; 23(4): 431-452, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748965

RESUMO

To find drivers of healthy ageing, a genome-wide association study (GWAS) was performed in healthy and unhealthy older individuals. Healthy individuals were defined as free from cardiovascular disease, stroke, heart failure, major adverse cardiovascular event, diabetes, dementia, cancer, chronic obstructive pulmonary disease (COPD), asthma, rheumatism, Crohn's disease, malabsorption or kidney disease. Six single nucleotide polymorphisms (SNPs) with unknown function associated with ten human genes were identified as candidate healthspan markers. Thirteen homologous or closely related genes were selected in the model organism C. elegans for evaluating healthspan after targeted RNAi-mediated knockdown using pathogen resistance, muscle integrity, chemotaxis index and the activity of known longevity and stress response pathways as healthspan reporters. In addition, lifespan was monitored in the RNAi-treated nematodes. RNAi knockdown of yap-1, wwp-1, paxt-1 and several acdh genes resulted in heterogeneous phenotypes regarding muscle integrity, pathogen resistance, chemotactic behaviour, and lifespan. Based on these observations, we hypothesize that their human homologues WWC2, CDKN2AIP and ACADS may play a role in health maintenance in the elderly.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte , Estudo de Associação Genômica Ampla , Humanos , Longevidade/genética , Fenótipo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Sinalização YAP
7.
Ecol Evol ; 12(3): e8603, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261737

RESUMO

Oxford Nanopore Technologies (ONT) is a third-generation sequencing technology that is gaining popularity in ecological research for its portable and low-cost sequencing possibilities. Although the technology excels at long-read sequencing, it can also be applied to sequence amplicons. The downside of ONT is the low quality of the raw reads. Hence, generating a high-quality consensus sequence is still a challenge. We present Amplicon_sorter, a tool for reference-free sorting of ONT sequenced amplicons based on their similarity in sequence and length and for building solid consensus sequences.

8.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053361

RESUMO

DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Glicogênio , Longevidade , Receptor de Insulina , Estresse Fisiológico , Regulação para Cima , Animais , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/efeitos da radiação , Glicogênio/biossíntese , Glicogênio/metabolismo , Resposta ao Choque Térmico/efeitos da radiação , Longevidade/fisiologia , Longevidade/efeitos da radiação , Mutação/genética , Pressão Osmótica/efeitos da radiação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estresse Fisiológico/efeitos da radiação , Análise de Sobrevida , Trealose/metabolismo , Raios Ultravioleta , Regulação para Cima/efeitos da radiação
9.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723324

RESUMO

Sarcopenia encompasses a progressive decline in muscle quantity and quality. Given its close association with ageing, it may represent a valuable healthspan marker. The commonalities with human muscle structure and facile visualization possibilities make Caenorhabditis elegans an attractive model for studying the relationship between sarcopenia and healthspan. However, classical visual assessment of muscle architecture is subjective and has low throughput. To resolve this, we have developed an image analysis pipeline for the quantification of muscle integrity in confocal microscopy images from a cohort of ageing myosin::GFP reporter worms. We extracted a variety of morphological descriptors and found a subset to scale linearly with age. This allowed establishing a linear model that predicts biological age from a morphological muscle signature. To validate the model, we evaluated muscle architecture in long-lived worms that are known to experience delayed sarcopenia by targeted knockdown of the daf-2 gene. We conclude that quantitative microscopy allows for staging sarcopenia in C. elegans and may foster the development of image-based screens in this model organism to identify modulators that mitigate age-related muscle frailty and thus improve healthspan.


Assuntos
Proteínas de Caenorhabditis elegans , Sarcopenia , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Humanos , Longevidade/genética , Músculos
10.
Nature ; 596(7871): 191-192, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34321642
11.
Metabolites ; 11(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673074

RESUMO

The C. elegans insulin/IGF-1 (insulin-like growth factor 1) signaling mutant daf-2 recapitulates the dauer metabolic signature-a shift towards lipid and carbohydrate accumulation-which may be linked to its longevity and stress resistance phenotypes. Trehalose, a disaccharide of glucose, is highly upregulated in daf­2 mutants and it has been linked to proteome stabilization and protection against heat, cold, desiccation, and hypoxia. Earlier studies suggested that elevated trehalose levels can explain up to 43% of the lifespan extension observed in daf-2 mutants. Here we demonstrate that trehalose accumulation is responsible for increased osmotolerance, and to some degree thermotolerance, rather than longevity in daf-2 mutants. This indicates that particular stress resistance phenotypes can be uncoupled from longevity.

12.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722365

RESUMO

Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.

13.
Cells ; 9(1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906434

RESUMO

DAF-16, the only forkhead box transcription factors class O (FoxO) homolog in Caenorhabditis elegans, integrates signals from upstream pathways to elicit transcriptional changes in many genes involved in aging, development, stress, metabolism, and immunity. The major regulator of DAF-16 activity is the insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, reduction of which leads to lifespan extension in worms, flies, mice, and humans. In C. elegans daf-2 mutants, reduced IIS leads to a heterochronic activation of a dauer survival program during adulthood. This program includes elevated antioxidant defense and a metabolic shift toward accumulation of carbohydrates (i.e., trehalose and glycogen) and triglycerides, and activation of the glyoxylate shunt, which could allow fat-to-carbohydrate conversion. The longevity of daf-2 mutants seems to be partially supported by endogenous trehalose, a nonreducing disaccharide that mammals cannot synthesize, which points toward considerable differences in downstream mechanisms by which IIS regulates aging in distinct groups.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Animais , Caenorhabditis elegans/genética , Modelos Biológicos , Mutação/genética , Transdução de Sinais , Estresse Fisiológico
14.
Genes Nutr ; 14: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080524

RESUMO

Animals require sufficient intake of a variety of nutrients to support their development, somatic maintenance and reproduction. An adequate diet provides cell building blocks, chemical energy to drive cellular processes and essential nutrients that cannot be synthesised by the animal, or at least not in the required amounts. Dietary requirements of nematodes, including Caenorhabditis elegans have been extensively studied with the major aim to develop a chemically defined axenic medium that would support their growth and reproduction. At the same time, these studies helped elucidating important aspects of nutrition-related biochemistry and metabolism as well as the establishment of C. elegans as a powerful model in studying evolutionarily conserved pathways, and the influence of the diet on health.

15.
World J Gastrointest Oncol ; 11(3): 250-263, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30918597

RESUMO

BACKGROUND: After an esophagectomy, the stomach is most commonly used to restore continuity of the upper gastrointestinal tract. These esophago-gastric anastomoses are prone to serious complications such as leakage associated with high morbidity and mortality. Graft perfusion is considered to be an important predictor for anastomotic integrity. Based on the current literature we believe Indocyanine green fluorescence angiography (ICGA) is an easy assessment tool for gastric tube (GT) perfusion, and it might predict anastomotic leakage (AL). AIM: To evaluate feasibility and effectiveness of ICGA in GT perfusion assessment and as a predictor of AL. METHODS: This study was designed according to the PRISMA guidelines and registered in the PROSPERO database. PubMed and EMBASE were independently searched by 2 reviewers for studies presenting data on intraoperative ICGA GT perfusion assessment during esophago-gastric reconstruction after esophagectomy. Relevant outcomes such as feasibility, complications, intraoperative surgical changes based on ICGA findings, quantification attempts, anatomical data and the impact of ICGA on postoperative anastomotic complications, were collected by 2 independent researchers. The quality of the included articles was assessed based on the Methodological Index for Non-Randomized Studies. The 19 included studies presented data on 1192 esophagectomy patients, in 758 patients ICGA was used perioperative to guide esophageal reconstruction. RESULTS: The 19 included studies for qualitative analyses all described ICGA as a safe and easy method to evaluate gastric graft perfusion. AL occurred in 13.8% of the entire cohort, 10% in the ICG guided group and 20.6% in the control group (P < 0.001). When poorly perfused cases are excluded from the analyses, the difference in AL was even larger (AL well-perfused group 6.3% vs control group 20.5%, P < 0.001). The AL rate in the group with an altered surgical plan based on the ICG image was 6.5%, similar to the well perfused group (6.3%) and significantly less than the poorly perfused group (47.8%) (P < 0.001), suggesting that the technique is able to identify and alter a potential bad outcome. CONCLUSION: ICGA is a safe, feasible and promising method for perfusion assessment. The lower AL rate in the well perfused group suggest that a good fluorescent signal predicts a good outcome.

16.
BMC Biol ; 17(1): 24, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866929

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. RESULTS: To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. CONCLUSION: Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs.


Assuntos
Caenorhabditis elegans/genética , Características de História de Vida , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Ligação Genética , Genótipo , Organismos Geneticamente Modificados
17.
J Gerontol A Biol Sci Med Sci ; 74(8): 1198-1205, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29099917

RESUMO

When cultured in axenic medium, Caenorhabditis elegans shows the largest life-span extension compared with other dietary restriction regimens. However, the underlying molecular mechanism still remains elusive. The gene cbp-1, encoding the worm ortholog of p300/CBP (CREB-binding protein), is one of the very few key genes known to be essential for life span doubling under axenic dietary restriction (ADR). By using tissue-specific RNAi, we found that cbp-1 expression in the germline is essential for fertility, whereas this gene functions specifically in the GABAergic neurons to support the full life span-doubling effect of ADR. Surprisingly, GABA itself is not required for ADR-induced longevity, suggesting a role of neuropeptide signaling. In addition, chemotaxis assays illustrate that neuronal inactivation of CBP-1 affects the animals' food sensing behavior. Together, our results show that the strong life-span extension in axenic medium is under strict control of GABAergic neurons and may be linked to food sensing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Privação de Alimentos/fisiologia , Neurônios GABAérgicos/metabolismo , Expectativa de Vida , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/fisiologia , Animais , Quimiotaxia , Meios de Cultura , Longevidade/fisiologia , Microscopia Confocal , Fenótipo
18.
Nanoscale ; 10(36): 17249-17256, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30191939

RESUMO

Non-destructive, controllable, remote light-induced release inside cells enables studying time- and space-specific processes in biology. In this work we demonstrate the remote release of tagged proteins in Caenorhabditis elegans (C. elegans) worms using a near-infrared laser light as a trigger from novel hydrogel shells functionalized with silver nanoparticles responsive to laser light. A new type of hydrogel shells was developed capable of withstanding prolonged storage in the lyophilized state to enable the uptake of the shell by worms, which takes place on an agar plate under standard culture conditions. Uptake of the shells by C. elegans was confirmed using confocal laser scanning microscopy, while release from alginate shells in C. elegans and the laser effect on the shells on a substrate in air was followed using fluorescence microscopy. In addition, Raman microscopy was used to track the localization of particles to avoid the influence of autofluorescence. Hierarchical cluster spectral analysis is used to extract information about the biochemical composition of an area of a nematode containing the hydrogel shells, whose Raman signal is enhanced by the SERS (Surface Enhanced Raman Scattering) effect due to hot spots formed by silver nanoparticles present in the shells. The in vivo release demonstrated here can be used to study intestinal microbiota and probiotic compounds as well as a possible future strategy for gene delivery in the worms, other insects and other organisms.


Assuntos
Ácido Algínico , Caenorhabditis elegans , Nanopartículas Metálicas , Proteínas/farmacocinética , Prata , Animais , Hidrogéis , Lasers , Microscopia Confocal , Microscopia de Fluorescência , Análise Espectral Raman
19.
Medicine (Baltimore) ; 97(38): e12073, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30235661

RESUMO

INTRODUCTION: The main cause of anastomotic leakage (AL) is tissue hypoxia, which results from impaired perfusion of the pedicle stomach graft after esophageal reconstruction. Clinical judgment is unreliable in determining graft perfusion. Therefore, an objective, validated, and reproducible method is urgently needed. Near infrared fluorescence perfusion imaging using indocyanine green (ICG) is an emerging and promising modality. This study's objectives are to evaluate the feasibility of quantification of ICG angiography (ICGA) to assess graft perfusion and to validate ICGA by comparison with hemodynamic parameters, blood and tissue expression of hypoxia-induced markers, and tissue mitochondrial respiration rates. And, second, to evaluate its ability to predict AL in patients after minimally invasive esophagectomy (MIE). METHODS: Patients (N = 70) with resectable esophageal cancer will be recruited for standard MIE. ICGA will be performed after graft creation and thoracic pull-up. Dynamic digital images will be obtained starting after intravenous bolus administration of ICG. The resulting images will be subjected to curve analysis and to compartmental analysis based on the adiabatic approximation to tissue homogeneity kinetic model. The calculated perfusion parameters will be compared to intraoperative hemodynamic data to evaluate the effects of patient hemodynamics. To verify whether graft perfusion represents tissue oxygenation, ICGA perfusion parameters will be compared with systemic and serosa lactate from the stomach graft. In addition, perfusion parameters will be compared to tissue expression of hypoxia-related markers and mitochondrial chain respiratory rate. Finally, the ability of functional, histological, and cellular perfusion and oxygenation parameters to predict AL and postoperative morbidity in general will be evaluated using the appropriate univariate and multivariate statistical analyses. DISCUSSION: The results of this project may lead to a novel, reproducible, and minimally invasive method to objectively assess perioperative anastomotic perfusion during MIE, potentially reducing the incidence of AL and its associated severe morbidity and mortality. TRIAL REGISTRATION: Clinicaltrials.gov registration number is NCT03587532. The study was approved by the ethical committee of the Ghent University, Belgium (B670201836427).


Assuntos
Fístula Anastomótica/diagnóstico por imagem , Fístula Anastomótica/etiologia , Angiografia/métodos , Neoplasias Esofágicas/cirurgia , Esofagectomia/efeitos adversos , Biomarcadores , Corantes/administração & dosagem , Hemodinâmica , Humanos , Hipóxia/diagnóstico por imagem , Verde de Indocianina/administração & dosagem , Isquemia/diagnóstico por imagem , Estudos Prospectivos , Projetos de Pesquisa
20.
Int J Parasitol ; 48(11): 833-844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031002

RESUMO

Parasitic helminths continue to pose problems in human and veterinary medicine, as well as in agriculture. Resistance to current anthelmintics has prompted the search for new drugs. Anthelmintic metabolites from medicinal plants could be good anthelmintic drug candidates. However, the compounds active against nematodes have not been identified in most medicinal plants with anthelmintic activity. In this study, we aimed to identify the active compounds against helminths in Warburgia ugandensis Sprague subspecies ugandensis (Canellaceae) and study the underlying mechanism of action. A bioassay-guided isolation of anthelmintic compounds from the plant was performed using a Caenorhabditis elegans (C. elegans) test model with a WMicrotracker instrument to monitor motility. Three active compounds were purified and identified by nuclear magnetic resonance and high resolution MS: warburganal (IC50: 28.2 ±â€¯8.6 µM), polygodial (IC50: 13.1 ±â€¯5.3 µM) and alpha-linolenic acid (ALA, IC50: 70.1 ±â€¯17.5 µM). A checkerboard assay for warburganal and ALA as well as polygodial and ALA showed a fractional inhibitory concentration index of 0.41 and 0.37, respectively, suggesting that polygodial and ALA, as well as warburganal and ALA, have a synergistic effect against nematodes. A preliminary structure-activity relationship study for polygodial showed that the α,ß-unsaturated 1,4-dialdehyde structural motif is essential for the potent activity. None of a panel of C. elegans mutant strains, resistant against major anthelmintic drug classes, showed significant resistance to polygodial, implying that polygodial may block C. elegans motility through a mechanism which differs from that of currently marketed drugs. Further measurements showed that polygodial inhibits mitochondrial ATP synthesis of C. elegans in a dose-dependent manner (IC50: 1.8 ±â€¯1.0 µM). Therefore, we believe that the underlying mechanism of action of polygodial is probably inhibition of mitochondrial ATP synthesis. In conclusion, polygodial could be a promising anthelmintic drug candidate worth considering for further development.


Assuntos
Anti-Helmínticos/farmacologia , Bioensaio/métodos , Caenorhabditis elegans/efeitos dos fármacos , Magnoliopsida/química , Extratos Vegetais/química , Sesquiterpenos/farmacologia , Animais , Anti-Helmínticos/química , Caenorhabditis elegans/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Células RAW 264.7 , Sesquiterpenos/química , Relação Estrutura-Atividade , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...