Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(6): 630, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129679

RESUMO

The standard method to determine chemical oxygen demand (COD) with K2Cr2O6 uses harmful chemicals, has a long analysis time, and cannot be used for on-site online monitoring. It is therefore necessary to find a fast, cheap, and harmless alternative. The amperometric determination of COD on boron-doped diamond (BDD) electrodes is a promising approach. However, to be a suitable alternative, the electrochemical method must at least be able to determine the COD of water samples independently of the contained substances. Therefore, the current signal as a function of various organic materials was investigated for the first time. It was shown that the height of the signal current depended on the type of organic matter in single-substance solutions and that this substance dependency increases with the amount of COD. Those findings could be explained by the mechanism proposed for this reaction, showing that the selectivity of the reaction depends on the ratio of the concentration of hydroxyl radicals and organic species. We give an outlook on how to improve the method in order to increase the linear working range and avoid signal variance and how to further explain the signal variance.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Oxirredução , Boro , Eletrodos , Poluentes Químicos da Água/química , Oxigênio
2.
Water Res ; 222: 118866, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35872520

RESUMO

The increasing environmental problems due to various organic micropollutants in water cause the search of suitable additional water treatment methods. Gaining experimental data for the large amount and variety of pollutants would consume a lot of time as well as economic and ecologic resources. An alternative approach is predictive quantitative structure-property relationship (QSPR) modeling, which establishes a correlation between the structural properties of a molecules with a biological, physical, or chemical property. Therefore, in this study, QSPR modeling has been conducted using extensive validation techniques and statistical test to investigate the structural influence on the degradability of organic micropollutants with ozonation. In contrast to most of the other studies, the underlying dataset - rate constants for 92 organic molecules - were obtained under standardized conditions with defined experimental parameters. QSPR modeling was executed using a combination of the software PaDEL for descriptor calculation and QSARINS for the modeling process respecting all five OECD-requirements for applicable QSAR/QSPR-models. The final model was selected using a multi-criteria decision-making tool to evaluate the model quality based on all calculated statistical quality parameters. The model included 10 selected descriptors and fingerprints and showed good regression abilities, predictive power, and stability (R² = 0.8221, CCCtr = 0.9024, Q²loo = 0.7436, R²ext = 0.8420, Q²F1 = 0.8104). The applicability domain of the QSPR model was defined and an interpretation of selected model descriptors has been connected to previous experimental studies. A significant influence of the interpretable descriptors was put into experimental context and compared with previous studies and models. For example, the molar refractivity as a measure of size and polarizability of a molecule and the occurrence of important substructures such as a formamide group seem to decrease the removal rate constant. The contribution of lone electrons entering into resonance as well as the occurrence of fused rings were identified as influences for the increase of the degradability of micropollutants by ozonation.


Assuntos
Poluentes Ambientais , Ozônio , Purificação da Água , Elétrons , Relação Quantitativa Estrutura-Atividade , Purificação da Água/métodos
3.
Ultrason Sonochem ; 83: 105950, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35151987

RESUMO

The present work addresses the correlation of bisphenol A (BPA) degradation by hydrodynamic cavitation with the fluid mechanical properties of the cavitating jet in the reactor. The effects of inlet pressure and two orifices were investigated. The fluid mechanics conditions during the reaction were evaluated by optical measurements to determine the jet length, bubble volume, number of bubbles, and bubble size distribution. In addition, chemiluminescence of luminol is used to localize chemically active bubbles due to the generation of hydroxyl radicals in the reactor chamber. The correlation between the rate constants of BPA degradation and the mechanical properties of the liquid is discussed. Here, linear dependencies between the degradation of BPA and the volume expansion of the bubble volume and chemiluminescence are found, allowing prediction of the rate constants and the hydroxyl radicals generated. BPA degradation of 50% was achieved in 30 min with the 1.7 mm nozzle at 25 bar. However, the 1 mm nozzle has been demonstrated to be more energetically efficient, achieving 10% degradation with 30% less power per 100 passes. There is a tendency for the number of small bubbles in the reactor to increase with smaller nozzle and increasing pressure difference.


Assuntos
Hidrodinâmica , Água , Compostos Benzidrílicos , Fenóis
4.
Ultrason Sonochem ; 82: 105867, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34920352

RESUMO

The increasing quantity and variety of organic contaminants discharged into surface and groundwater increase the necessity of additional and suitable water treatment methods, which can be incorporated into existing wastewater treatment plants. The huge variety of micropollutants and local variability of the composition of the organic load or matrix effects paired with multiple possible degradation processes lead to the requirement of a recommendation tool for the best possible water treatment method under given local conditions. Due to the diversity of physicochemical properties of micropollutants, such predictions are challenging. In this study, a quantitative correlation between the structural properties of certain micropollutants and their degradability using high-frequency sonolysis has been investigated. Therefore, Quantitative Structure-Property Relationship (QSPR) has been applied on a set of phenol derivates. To obtain the kinetic data, all experiments have been conducted in standardized, constant conditions for all 32 investigated phenol derivates. QSPR modelling was then executed using the software PaDEL for descriptor calculation and the software QSARINS for the overall modelling process including genetic algorithm (GA) and multiple linear regression (MLR). The final model consisting of 5 molecular descriptors was selected using a multi-criteria decision-making method based on extensive statistical parameters. The predictive power and robustness of the model was evaluated by means of internal cross validation and external validation using an independent validation set. The final selected model showed very good values for regression abilities, predictive power as well as stability (R2adj = 0.9455, CCCtr = 0.9777, Q2loo = 0.9285, CCCext = 0.9797 and Q2ext-F1 = 0.9711). The applicability domain of the QSPR model was defined based on the Williams plot and Insubria plot. The five OECD principles for the application of QSPR/QSAR modelling in industry and regulation were fulfilled in the whole process to the best of our knowledge, including the collection of the underlying experimental data as well as the entire modelling process. The final QSPR model included the molecular polarity and occurrence of hydrogen bonds as major influences on the reaction rate constants in accordance with previous studies. Nevertheless, potential biases in the selection of these descriptors due to the small size of the dataset were highlighted.

5.
Phys Chem Chem Phys ; 22(41): 23464-23473, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32960200

RESUMO

Pyrocatalysis is an emerging advanced oxidation process for wastewater remediation with the potential for thermal energy harvesting and utilization. Although several studies explored the potential of new pyrocatalyst materials to degrade harmful organic water pollutants, the role of important material properties and electric poling procedures on the pyrocatalytic activity is still unclear. In this work, we investigate the interdependence between particle size, electric poling and pyrocatalytic activity of BaTiO3 powders with nominal particle sizes of 100, 200 and 500 nm by using the dichlorofluorescein redox assay. Depending on the particle size, the influence of surface area or phase composition on the pyrocatalytic activity predominates. Moreover, we demonstrate that poling of pyrocatalysts leads to a strong size-dependent increase of pyrocatalytic activity. This poling effect increases with particle size up to +247% and can be explained with size-dependent changes in phase composition and domain structure. Combining all results, the progression of the pyrocatalytic activity as a function of particle size was derived and a future strategy for maximizing the catalytic performance of pyrocatalysts was developed. This study greatly improves the understanding about the role of important material properties and electric poling on pyrocatalytic activity, thus enabling an effective catalyst design. With the help of highly active catalysts, the pyrocatalytic process can take the next step in its development into a new and energy-efficient advanced oxidation process for water remediation.

6.
Environ Sci Process Impacts ; 22(8): 1678-1687, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32638776

RESUMO

Microplastics are ubiquitous in the environment. Due to still rising global production, the emission of polymers into the environment and the abundance of microplastics have increased accordingly. Due to the long mineralization processes of microplastics, distribution in all compartments can be found. The hydrophobic surfaces of the particles can sorb chemical pollutants, therefore providing a potential pathway to accumulation by organisms within the food web. However, little is known about how long-term aging and degradation processes of microplastics can affect the sorption behaviours of organic pollutants on the particles. In this study, important industrial additives of emerging environmental concern, such as hydrophobic aromatic amines, were studied in relation to their sorption behaviour on high-density polyethylene and low-density polyethylene microplastics. Diphenylamine (log POW (logarithmic octanol-water partition coefficient) = 3.5) showed strong sorption, carbamazepine (log POW = 2.5) showed moderate sorption, and aniline (log POW = 0.9) showed no detectable sorption behaviour. Artificially aged particles exposed to photochemical aging and long-term mechanical treatment in water were compared to pristine microplastics. While mechanically aged microplastics promoted the sorption of aromatic amines, photochemically aged particles showed a decrease in sorption capacity due to changed surface chemistry. Importantly, the sorption capacity increased with increasing salinity, leading to strong implications for ocean systems, as an elevated uptake of pollutants could occur under marine conditions. Moreover, our study demonstrates that the ecotoxicological effects of diphenylamine on the growth of the seaweed Ulva (sea lettuce, Chlorophyta) were reduced in the presence of microplastics. As the plastic particles withdrew enough contaminants from solution, even toxic levels of diphenylamine (c = 10-4 M) became tolerable for the algae. However, the pollutants initially sorbed on the microplastics can be released again at a later point in the ageing process, thus having delayed pollution potential.


Assuntos
Plásticos , Polietileno , Alga Marinha , Poluentes Químicos da Água , Adsorção , Aminas , Microplásticos , Modelos Químicos
7.
PLoS One ; 15(2): e0228644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027709

RESUMO

Pyrocatalysis uses thermally excited pyroelectric materials for the generation of reactive oxygen species in water. This unique feature allows it to harvest energy in the form of natural temperature gradients or waste heat from industrial processes in order to degrade organic pollutants at low costs. Its further development into an advanced oxidation process for water remediation is dependent on the availability of pH-robust and nonspecific redox assays for the determination of its oxidation capability. Nevertheless, previous studies neglected the influence of pH changes and they were focused mainly on the degradation of one organic compound or specific chemical dosimetries. In this study, a pH-robust and nonspecific reaction protocol of the dichlorofluorescein assay was established for the investigation of the oxidation capability of the pyrocatalytic process. This reaction protocol was tested on three pyroelectric powders (LiNbO3, LiTaO3, BaTiO3) in different amounts and it overcomes major constraints of a previously used dichlorodihydrofluorescein diacetate-based reaction protocol. Instead of its diacetate, dichlorodihydrofluorescein was used as fluorogenic probe and its concentration was drastically reduced to 1 µM. For the first time, these changes enable the determination and comparison of the oxidation capability independently of pH-rising processes, which are present for all investigated pyroelectric powders up to a pH of 11. Additionally, the precision of the dichlorofluorescein assay was drastically increased and the determination and consideration of autoxidation processes was enabled. Of all three pyroelectric powders, BaTiO3 exhibited the highest oxidation capability with a linear increase with respect to the powder amount.


Assuntos
Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos , Fluoresceínas/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Oxirredução , Pós , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química
8.
Ultrason Sonochem ; 60: 104788, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31550644

RESUMO

To prevent possible spread of nosocomial infections - HAI (Healthcare Acquired Infections) in healthcare facilities, Antibacterial textiles are developed. This carried out study has been conducted to assess the feasibility of the method of obtaining antibacterial coatings on textile materials. Specifically, the sol-gel method for synthesis of titanium dioxide nanoparticles in combination with zinc oxide nanoparticles from titanyl sulphate and zinc nitrate hexahydrate has been investigated. During the synthesis of titanium dioxide nanoparticles in combination with the zinc oxide nanoparticles, the coated textile material showed stable antibacterial properties with a suppression level ofEscherichia coliof more than 99.99%. The method has been tested on a semi-industrial scale in roll-to-roll experimentby applying homogenous coatings at a speed of 1,5 m per minute.

10.
Phys Chem Chem Phys ; 21(41): 23009-23016, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599889

RESUMO

The pyro-electro-catalytic induced generation of hydrogen gas is an environmentally friendly and sustainable way to convert excess thermal energy into a storable form. The main idea is to make use of spontaneous polarization of pyroelectric materials that can be altered by temperature changes. Thus, surface potential changes and subsequent electron exchange with surrounding molecules can be induced. In this work, a fundamental model to describe the behavior of a thermally excited pyroelectric material in pure water is developed. The model combines the fields of pyroelectricity, electrochemistry, diffusion and semiconductor theory. After derivation, it was used to explore some basic questions on pyro-electro-catalytic hydrogen production and the accuracy was tested with experimental data. The results show that p/εr has to be balanced depending on the temperature gradient to maximize the hydrogen production. The validation of the experimental data revealed good agreement.

11.
Ultrason Sonochem ; 39: 741-749, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28733001

RESUMO

Micropollutants are becoming an increasing problem for the environment and wastewater treatment. One example is Bisphenol A (BPA), an endocrinic disruptor, which is widely used in plastic production. Due to its endocrine disrupting effects on aquatic (micro-)organisms and its ubiquity, in surface- and wastewater alike, adequate treatment techniques are necessary. In this study, the degradation of BPA by a sonoelectrochemical hybrid system was investigated, using a low frequency (24kHz) ultrasound horn and two boron doped diamond electrodes. It was found that by the combination of the individual processes, i.e. ultrasound and electrochemical oxidation, more than 90% of BPA could be removed within 30min at an initial concentration of 1mgL-1. Moreover, synergistic effects were discovered and a considerable improvement compared to the individual processes could be achieved by using a potential of 5V, whereas synergistic effects were absent at a potential of 10V. This study provides investigation of ultrasound amplitude, potential and electrode positioning on BPA degradation. The reaction was found to follow pseudo first order kinetics with a rate constant of 0.089min-1. Samples were analysed by high pressure liquid chromatography (HPLC) using a diode array detector. Moreover, the presence and distribution of hydroxyl radicals within the reactor was visualized by using sonochemiluminescence.


Assuntos
Compostos Benzidrílicos/química , Disruptores Endócrinos/química , Fenóis/química , Ondas Ultrassônicas , Água/química , Eletroquímica , Oxirredução
12.
Ultrason Sonochem ; 21(6): 2020-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24768032

RESUMO

The sonoelectrochemical degradation of triclosan in aqueous solutions with high-frequency ultrasound (850kHz) and various electrodes was investigated. Diamond coated niobium electrode showed the best results and was used as standard electrode, leading to effective degradation and positive synergistic effect. The influence of different parameters on the degradation degree and energy efficiency were evaluated and favorable reaction conditions were found. It could be shown that 92% of triclosan (1mgL(-1) aqueous solution) was degraded within 15min, following pseudo-first order kinetics.


Assuntos
Triclosan/química , Ultrassom , Purificação da Água/métodos , Água/química , Condutividade Elétrica , Eletroquímica , Eletrodos , Concentração de Íons de Hidrogênio , Temperatura , Triclosan/isolamento & purificação
13.
Ultrason Sonochem ; 20(2): 715-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23084791

RESUMO

The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26g/L Na(2)SO(4) and 30V electrical voltages at 25°C in 1h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.

14.
Water Res ; 46(7): 2469-77, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22365175

RESUMO

The antiepileptic drug carbamazepine is one of the most abundant pharmaceuticals in the German aquatic environment. The effect of low carbamazepine concentrations (1-50 µg L(-1)) is discussed controversially, but ecotoxicological studies revealed reproduction toxicity, decreased enzymatic activity and bioaccumulation in different test organisms. Therefore, as a preventive step, an efficient and cost-effective technique for wastewater treatment plants is needed to stop the entry of pharmaceuticals into the aquatic environment. Cavitation, the formation, growth, and subsequent collapse of gas- or vapor-filled bubbles in fluids, was applied to solve this problem. The technique of Hydrodynamic-Acoustic-Cavitation was used showing high synergistic effect. Under optimized conditions carbamazepine (5 µg L(-1)) was transformed by pseudo-first order kinetics to an extent of >96% within 15 min (27% by hydrodynamic cavitation, 33% by acoustic cavitation). A synergistic effect of 63% based on the sum of the single methods was calculated. Carbamazepine concentrations were monitored by a sensitive and selective immunoassay and after 60 min no known metabolites were detectable by LC-MS/MS.


Assuntos
Carbamazepina/química , Ultrassom , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cromatografia Líquida , Alemanha , Temperatura Alta , Imunoensaio , Cinética , Estrutura Molecular , Oxirredução , Espectrometria de Massas em Tandem
15.
J Hazard Mater ; 190(1-3): 375-80, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21474241

RESUMO

800mL of 1.0mM phenol-containing aqueous solution was circulated at 20°C for 30 min in a suction-reactor, while 3.2 mg min(-1) ozone was introduced into the solution under the suction orifice. The removal rates of phenol vary polynomially with the orifice diameter as well as the suction pressure. The rate constant for the zero-order kinetics achieves the highest value at -0.070 MPa by using 5mm orifice. Although the suction-cavitation alone cannot remove phenol in 30 min, it can considerably enhance the ozonation of phenol. The rate constants for the zero-order kinetics by the simple ozonation and the combined method are 0.018 and 0.028 min(-1), respectively. Furthermore, no ozone was observed in the tail gas during the first 15 min for the ozonation in the suction reactor, and then the concentration of unreacted ozone slowly increased, indicating that the utilization rate of ozone is significantly improved by the suction-cavitation. The increasing input concentration of ozone obviously accelerates the ozonation of phenol, but the total required quantities of ozone are very close by various ozone input concentrations to reach the same degradation rate, indicating the ozonation assisted by the suction-cavitation can be considered as a quantitative reaction.


Assuntos
Ozônio/química , Fenol/química , Cinética , Pressão , Sucção
16.
Ultrason Sonochem ; 18(4): 888-94, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21216173

RESUMO

The decomposition of chloroform by the combination of hydrodynamic and acoustic cavitation (Hydrodynamic-Acoustic-Cavitation/HAC) has been investigated. The flow rate and the hole diameter of the orifice plate remarkably affect the conversion of chloroform in the combined system. The conversion increases with increasing fluid velocity without any restriction. With a 2.8mm orifice plate the conversion reaches an optimal value. A synergistic effect has been obtained by the hybrid method of acoustic and hydrodynamic cavitation. The total synergistic effect achieves 17% and 73% per pass, respectively. The analysis of the energy efficiencies shows different results. Due to high optimization potential, this hybrid method can be visualized as a new step for wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...