Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957042

RESUMO

Dendronized gold nanoparticles (AuNPs) were synthesized bearing charged peripheral groups. Two novel AB3-type dendrons were synthesized with a thiol group at the focal point followed by their attachment to AuNPs. Dendrons were designed to have nine charged peripheral groups (carboxyl or amine), glycol solubilizing, units and one thiol moiety at the focal point. Both dendrons and all intermediates were synthesized in high yields and characterized by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The amine- and carboxyl-terminated dendrons were used to functionalize gold nanoparticles (AuNPs) previously stabilized with citrate. The nanoparticles' diameters and their colloidal stability were investigated using dynamic light scattering (DLS). The size and morphology of the dendronized AuNPs were evaluated by scanning electron microscopy (SEM), which revealed individual particles with no aggregation after replacement of citrate by the dendrons, in agreement with the DLS data. The absorption spectroscopy reveals a prominent plasmonic band at 560 nm for all AuNPs. The zeta potential further confirmed the expected charged structures of the dendronized AuNPs. Considering all the physical-chemical properties of the charged dendronized AuNPs developed in this work, these AuNPs might be used as a weapon against multi-drug resistant bacterial infections.

2.
Biomacromolecules ; 22(12): 5290-5306, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34779620

RESUMO

This contribution describes the design and synthesis of multifunctional micelles based on amphiphilic brush block copolymers (BBCPs) for imaging and selective drug delivery of natural anticancer compounds. Well-defined BBCPs were synthesized via one-pot multi-step sequential grafting-through ring-opening metathesis polymerization (ROMP) of norbornene-based macroinitiators. The norbornenes employed contain a poly(ethylene glycol) methyl ether chain, an alkyl bromide chain, and/or a near-infrared (NIR) fluorescent cyanine dye. After block copolymerization, post-polymerization transformations using bromide-azide substitution, followed by the strain-promoted azide-alkyne cycloaddition (SPAAC) allowed for the functionalization of the BBCPs with the piplartine (PPT) moiety, a natural product with well-documented cytotoxicity against cancer cell lines, via an ester linker between the drug and the polymer side chain. The amphiphilic BBCPs self-assembled in aqueous media into nano-sized spherical micelles with neutral surface charges, as confirmed by dynamic light scattering analysis and transmission electron microscopy. During self-assembly, paclitaxel (PTX) could be effectively encapsulated into the hydrophobic core to form stable PTX-loaded micelles with high loading capacities and encapsulation efficiencies. The NIR fluorescent dye-containing micelles exhibited remarkable photophysical properties, excellent colloidal stability under physiological conditions, and a pH-induced disassembly under slightly acidic conditions, allowing for the release of the drug in a controlled manner. The in vitro studies demonstrated that the micelles without the drug (blank micelles) are biocompatible at concentrations of up to 1 mg mL-1 and present a high cellular internalization capacity toward MCF-7 cancer cells. The drug-functionalized micelles showed in vitro cytotoxicity comparable to free PPT and PTX against MCF-7 and PC3 cancer cells, confirming efficient drug release into the tumor environment upon cellular internalization. Furthermore, the drug-functionalized micelles exhibited higher selectivity than the pristine drugs and preferential cellular uptake in human cancer cell lines (MCF-7 and PC3) when compared to the normal breast cell line (MCF10A). This study provides an efficient strategy for the development of versatile polymeric nanosystems for drug delivery and image-guided diagnostics. Notably, the easy functionalization of BBCP side chains via SPAAC opens up the possibility for the preparation of a library of multifunctional systems containing other drugs or functionalities, such as target groups for recognition.


Assuntos
Micelas , Nanomedicina Teranóstica , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Norbornanos , Polietilenoglicóis/química , Polímeros/química
3.
Bioorg Chem ; 116: 105292, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509797

RESUMO

A library of nine hybrids of 4-hydroxygoniothalamin (2), 4-hydroxypiplartine (4), monastrol (5) and oxo-monastrol (6) was prepared via a modular synthetic route with a diester or a 1,2,3-triazole as linkers. The compounds were assayed against a panel of human cancer cell lines, including MCF-7 (breast adenocarcinoma), HeLa (cervical adenocarcinoma), Caco-2 (colorectal adenocarcinoma) and PC3 (prostate adenocarcinoma), as well as against normal breast (MCF10A) and prostate (PNT2) cells. In general, hybrids with an ester linker containing 4-hydroxypiplartine (4) were more potent than the corresponding hybrids with 4-hydroxygoniothalamin (2). On the other hand, compounds presenting the 1,2,3-triazole linker displayed enhanced cytotoxicity and selectivity when compared to their corresponding hybrids with the diester linker. The 4-hydroxypiplartine-based hybrids 12 and 22 displayed high cytotoxicity (IC50 values below 10 µM) against all cancer cells studied, especially in MCF-7 cells with IC50 values of 1.7 ± 0.1 and 1.6 ± 0.9 µM, respectively. Furthermore, the 4-hydroxygoniothalamin-monastrol hybrid (compound 21) and the 4-hydroxypiplartine-oxo-monastrol hybrid (compound 25), both bearing a 1,2,3-triazole linker, displayed high selectivity and potency towards breast cancer cell line (MCF-7 vs. MCF10 cells, selectivity index = 15.8 and 7.1, respectively), while the 4-hydroxypiplartine -4-hydroxymethylgoniothalamin hybrid with a diester linker (compound 33) showed high selectivity towards melanoma cancer cells (selectivity index = 9.6). Antiproliferative and pro-apoptotic potential of compounds 12 and 22 against MCF-7 cancer cells were further investigated. Cell cycle studies revealed increased G2/M population in MCF-7 cultures as well as reduced G0/G1 population compared to the control groups indicating cell cycle arrest in G2/M phase. In addition, the frequency of positive cells for annexin V was higher in treated samples suggesting that compounds 12 and 22 induce apoptosis in estrogen-positive MCF-7 cells.


Assuntos
Antineoplásicos/farmacologia , Piperidonas/farmacologia , Pironas/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piperidonas/química , Pironas/química , Relação Estrutura-Atividade , Triazóis/química
4.
Curr Res Struct Biol ; 3: 179-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401749

RESUMO

Chlorotoxin (ClTx) is a 36-residue disulfide-rich peptide isolated from the venom of the scorpion Leiurus quinquestriatus. This peptide has been shown to selectively bind to brain tumours (gliomas), however, with conflicting reports regarding its direct cellular target. Recently, the vascular endothelial growth factor receptor, neuropilin-1 (NRP1) has emerged as a potential target of the peptide. Here, we sought to characterize the details of the binding of ClTx to the b1-domain of NRP1 (NRP1-b1) using solution state nuclear magnetic resonance (NMR) spectroscopy. The 3D structure of the isotope labelled peptide was solved using multidimensional heteronuclear NMR spectroscopy to produce a well-resolved structural ensemble. The structure points to three putative protein-protein interaction interfaces, two basic patches (R14/K15/K23 and R25/K27/R36) and a hydrophobic patch (F6/T7/T8/H10). The NRP1-b1 binding interface of ClTx was elucidated using 15N chemical shift mapping and included the R25/K27/R36 region of the peptide. The thermodynamics of binding was determined using isothermal titration calorimetry (ITC). In both NMR and ITC measurements, the binding was shown to be competitive with a known NRP1-b1 inhibitor. Finally, combining all of this data we generate a model of the ClTx:NRP1-b1 complex. The data shows that the peptide binds to the same region of NRP1 that is used by the SARS-CoV-2 virus for cell entry, however, via a non-canonical binding mode. Our results provide evidence for a non-standard NRP1 binding motif, while also providing a basis for further engineering of ClTx to generate peptides with improved NRP1 binding for future biomedical applications.

5.
Chem Commun (Camb) ; 57(60): 7398-7401, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34225355

RESUMO

We present a straightforward "click chemistry" methodology for the functionalization of water-oxidation catalyst iridium oxide nanoparticles (IrOx-NPs) with a multi-functionalized porphyrin-based photosynthetic model as sensitizer for the preparation of bioinspired photo-catalysts. This efficient method overcomes the usual aggregation issue found when decorating water oxidation nanocolloidal catalysts with hydrophobic sensitizers.

6.
J Am Chem Soc ; 143(33): 12948-12954, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34291930

RESUMO

The promising field of nanomedicine stimulates a continuous search for multifunctional nanotheranostic systems for imaging and drug delivery. Herein, we demonstrate that application of supramolecular chemistry's concepts in dendritic assemblies can enable the formation of advanced dendrimer-based nanotheranostic devices. A dendrimer bearing 81 triazolylferrocenyl terminal groups adopts a more compact shell-like structure in polar solvents with the ferrocenyl peripheral groups backfolding toward the hydrophobic dendrimer interior, while exposing the more polar triazole moieties as the dendritic shell. Akin to lipids, the compact dendritic structure self-assembles into uniform nanovesicles that in turn self-assemble into larger vesosomes in water. The vesosomes emit green nontraditional intrinsic fluorescence (NTIL), which is an emerging property as there are no classical fluorophores in the dendritic macromolecular structure. This work confirms the hypothesis that the NTIL emission is greatly enhanced by rigidification of the supramolecular assemblies containing heteroatomic subluminophores (HASLs) and by the presence of electron rich functional groups on the periphery of dendrimers. This work is the first one detecting NTIL in ferrocenyl-terminated dendrimers. Moreover, the vesosomes are stable in biological medium, are uptaken by cells, and show cytotoxic activity against cancer cells. Accordingly, the self-organization of these dendrimers into tertiary structures promotes the emergence of new properties enabling the same component, in this case, ferrocenyl group, to function as both antitumoral drug and fluorophore.

7.
Chemistry ; 27(20): 6213-6222, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33285026

RESUMO

Photodynamic therapy has been used to treat a variety of diseases, however, there is continuing search for new biocompatible photosensitizers. Herein, we demonstrate for the first time that imidazo[1,2-a]pyrimidine compounds are able to generate singlet oxygen species and can act as photosensitizers in the intracellular environment. Our results show that this class of compounds absorb and emit in the 400-500 nm region, present low cytotoxicity in the dark, are efficiently uptaken by cells, are fluorescent in intracellular medium, and generate singlet oxygen upon irradiation, killing cancer cells within 2 h at low concentration (2.0 µm). The imidazo[1,2-a]pyrimidine compounds are a potential new tool for phototheranostics, because they can be simultaneously used for fluorescence imaging and photodynamic therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Corantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pirimidinas , Oxigênio Singlete
8.
ACS Biomater Sci Eng ; 6(5): 2929-2942, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463303

RESUMO

Goniothalamin (GTN), a natural compound isolated from Goniothalamus species, has previously demonstrated cytotoxic activity against several cancer cell lines. However, similarly to many natural and synthetic anticancer compounds, GTN presents toxicity toward some healthy cells and low aqueous solubility, decreasing its bioavailability and precluding its application as an antineoplastic drug. In our efforts to improve the pharmacokinetic behavior and selectivity of GTN against cancer cells, we developed a polymeric nanosystem, in which rac-GTN was encapsulated in pH-responsive acetalated dextran (Ac-Dex) nanoparticles (NPs) with high loadings of the bioactive compound. Dynamic light scattering (DLS) analysis showed that the nanoparticles obtained presented a narrow size distribution of around 100 nm in diameter, whereas electron microscopy (EM) images showed nanoparticles with a regular spherical morphology in agreement with the size range obtained by DLS. Stability and release studies indicated that the GTN@Ac-Dex NPs presented high stability under physiological conditions (pH 7.4) and disassembled under slightly acidic conditions (pH 5.5), releasing the rac-GTN in a sustained manner. In vitro assays showed that GTN@Ac-Dex NPs significantly increased cytotoxicity and selectivity against cancer cells when compared with the empty Ac-Dex NPs and the free rac-GNT. Cellular uptake and morphology studies using MCF-7 cells demonstrated that GTN@Ac-Dex NPs are rapidly internalized into the cancer cells, causing cell death. In vivo investigation confirmed the efficient release of rac-GTN from GTN@Ac-Dex NPs, resulting in the delay of prostate cancer progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Furthermore, liver histopathology evaluation after treatment with GTN@Ac-Dex NPs showed no evidence of toxicity. Therefore, the in vitro and in vivo findings suggest that the Ac-Dex NPs are a promising nanosystem for the sustained delivery of rac-GTN into tumors.


Assuntos
Dextranos , Nanopartículas , Animais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Pironas/farmacologia
9.
ChemMedChem ; 14(15): 1403-1417, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31260170

RESUMO

Two series of racemic goniothalamin analogues displaying nitrogen-containing groups were designed and synthesized. A total of 19 novel analogues were evaluated against a panel of four different cancer cell lines, along with the normal prostate cell line PNT2 to determine their selectivity. Among them, goniothalamin chloroacrylamide 13 e displayed the lowest IC50 values for both MCF-7 (0.5 µm) and PC3 (0.3 µm) cells, about 26-fold more potent than goniothalamin (1). Besides its higher potency, compound 13 e also displayed much higher selectivity than goniothalamin. In contrast, goniothalamin isobutyramide 13 c was the most potent analogue against Caco-2 cells (IC50 =0.8 µm), about 10-fold more potent and 17-fold more selective than 1. These results reveal the potential of compounds 13 c and 13 e for further in vivo studies, representing the first goniothalamin analogues with IC50 values in the low micromolar range and high selectivity against MCF-7, Caco-2, and PC3 cancer cell lines.


Assuntos
Antineoplásicos/síntese química , Nitrogênio/química , Pironas/síntese química , Amidas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pironas/farmacologia , Relação Estrutura-Atividade
10.
Mol Pharm ; 16(5): 2083-2094, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901218

RESUMO

Nanoparticles (NPs) based on the biodegradable acetalated dextran polymer (Ac-Dex) were used for near-infrared (NIR) imaging and controlled delivery of a PtIV prodrug into cancer cells. The Ac-Dex NPs loaded with the hydrophobic PtIV prodrug 3 (PtIV/Ac-Dex NPs) and with the novel hydrophobic NIR-fluorescent dye 9 (NIR-dye 9/Ac-Dex NPs), as well as Ac-Dex NPs coloaded with both compounds (coloaded Ac-Dex NPs), were assembled using a single oil-in-water nanoemulsion method. Dynamic light scattering measurements and scanning electron microscopy images showed that the resulting Ac-Dex NPs are spherical with an average diameter of 100 nm, which is suitable for accumulation in tumors via the enhanced permeation and retention effect. The new nanosystems exhibited high drug-loading capability, high encapsulation efficiency, high stability in physiological conditions, and pH responsiveness. Drug-release studies clearly showed that the PtIV prodrug 3 release from Ac-Dex NPs was negligible at pH 7.4, whereas at pH 5.5, this compound was completely released with a controlled rate. Confocal laser scanning microscopy unambiguously showed that the NIR-dye 9/Ac-Dex NPs were efficiently taken up by MCF-7 cells, and cytotoxicity assays against several cell lines showed no significant toxicity of blank Ac-Dex NPs up to 1 mg mL-1. The IC50 values obtained for the PtIV prodrug encapsulated in Ac-Dex NPs were much lower when compared with the IC50 values obtained for the free PtIV complex and cisplatin in all cell lines tested. Overall, our results demonstrate, for the first time, that Ac-Dex NPs constitute a promising drug delivery platform for cancer therapy.


Assuntos
Dextranos/química , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/patologia , Platina/química , Pró-Fármacos/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Células MCF-7 , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
11.
Soft Matter ; 15(6): 1278-1289, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30465687

RESUMO

Rheology, small-angle X-ray scattering (SAXS), and dynamic light scattering (DLS) analysis, zeta potential measurement, scanning electron microscopy (SEM), and micro-FTIR and absorbance spectroscopy were used to enlighten the controversial literature about LAPONITE® materials. Our data suggest that pristine LAPONITE® in water does not form hydrogels induced by the so-called "house of cards" assembly, but rather forms Wigner glasses governed by repulsive forces. Ionic interactions between anisotropic LAPONITE® nanodiscs, sodium polyacrylate and inorganic salts afforded hydrogels that were transparent, self-standing, moldable, strong, and biocompatible with shear-thinning and self-healing behavior. An extensive study on the role of salts in the gelification process dictates a trend that relates the valence of cations with the viscoelastic properties of the bulk material (G' values follow the trend, monovalent < divalent < trivalent). These hydrogels present G' values up to 5.1 × 104 Pa, which are considered high values for non-covalent hydrogels. Hydrogels crosslinked with sodium phosphate salts are biocompatible, and might be valid candidates for injectable drug delivery systems due to their shear-thinning behavior with rapid self-healing after injection.

12.
Beilstein J Org Chem ; 13: 925-937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28684974

RESUMO

The understanding of the conformational behavior of amino acids and their derivatives is a challenging task. Here, the conformational analysis of esterified and N-acetylated derivatives of L-methionine and L-cysteine using a combination of 1H NMR and electronic structure calculations is reported. The geometries and energies of the most stable conformers in isolated phase and taking into account the implicit solvent effects, according to the integral equation formalism polarizable continuum model (IEF-PCM), were obtained at the ωB97X-D/aug-cc-pVTZ level. The conformational preferences of the compounds in solution were also determined from experimental and theoretical 3JHH coupling constants analysis in different aprotic solvents. The results showed that the conformational stability of the esterified derivatives is not very sensitive to solvent effects, whereas the conformational equilibrium of the N-acetylated derivatives changes in the presence of solvent. According to the natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) and noncovalent interactions (NCI) methodologies, the conformational preferences for the compounds are not dictated by intramolecular hydrogen bonding, but by a joint contribution of hyperconjugative and steric effects.

13.
J Phys Chem A ; 121(3): 729-740, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28051862

RESUMO

The conformational preferences of amino acids and their derivatives have been the subject of many investigations, because protein folding pathways that determine three-dimensional geometries are primarily restricted by the conformational space of each amino acid residue. Here we systematically describe the conformational behavior of l-histidine methyl ester (His-OMe) and its N-acetylated derivative (Ac-His-OMe) in the isolated phase and in solution. To this end, we employed spectroscopic techniques (1H NMR and IR), supported by quantum chemical calculations. Initially, the energetically favorable conformers, their energies, and structural properties obtained by density functional theory (DFT) and Møller-Plesset perturbation theory (MP2) calculations in the isolated phase and in solution via the implicit solvation model IEF-PCM were presented. Next, experimental 3JHH spin-spin coupling constants obtained in different aprotic nonpolar and polar solvents were compared with the theoretically predicted ones for each conformer at the IEF-PCM/ωB97X-D/EPR-III level. A joint analysis of these data allowed the elucidation of the conformational preferences of the compounds in solution. Infrared data were also employed as a complement to estimate the His-OMe conformer populations. Finally, the quantum theory of atoms in molecules (QTAIM), the noncovalent interactions (NCI), and the natural bond orbitals (NBO) analyses were used to determine the intramolecular interactions that govern the relative conformational stabilities.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 129: 148-56, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24727174

RESUMO

The geometries involved in the conformational equilibria of 2,2-dichloro-N-cyclohexyl-N-methyl-acetamide (DCCMA) and 2-chloro-N,N-dicyclohexylacetamide (CDCA) were investigated. Theoretical calculations at the B3LYP/cc-pVDZ level of theory showed that gauche forms (ClCCO) are the most stable and the predominant conformers in isolated phase. Both compounds had the conformational behavior in solvents of different polarities estimated from theoretical calculations with the PCM (Polarizable Continuum Model), at the same level of theory, using infrared data from deconvolution of the carbonyl absorption bands and (13)C NMR spectra. Their IR spectra showed two carbonyl absorptions and that the conformer with the highest dipole moment had its population increased when the most polar solvents were used, in accordance with the theoretical calculation in solution. (1)JCH coupling constants were obtained from their NMR spectra, and revealed that there was population variation of conformers with solvent exchange. Experimental data (NMR and IR) as well as calculations including the solvent effects followed the same trend.


Assuntos
Acetamidas/química , Isomerismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Espectrofotometria Infravermelho
15.
J Phys Chem A ; 118(9): 1748-58, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24533966

RESUMO

This work reports a detailed study regarding the conformational preferences of L-proline methyl ester (ProOMe) and its N-acetylated derivative (AcProOMe) to elucidate the effects that rule their behaviors, through nuclear magnetic resonance (NMR) and infrared (IR) spectroscopies combined with theoretical calculations. These compounds do not present a zwitterionic form in solution, simulating properly amino acid residues in biological media, in a way closer than amino acids in the gas phase. Experimental (3)JHH coupling constants and infrared data showed excellent agreement with theoretical calculations, indicating no variations in conformer populations on changing solvents. Natural bond orbital (NBO) results showed that hyperconjugative interactions are responsible for the higher stability of the most populated conformer of ProOMe, whereas for AcProOMe both hyperconjugative and steric effects rule its conformational equilibrium.


Assuntos
Prolina/análogos & derivados , Teoria Quântica , Acetilação , Espectroscopia de Ressonância Magnética , Conformação Molecular , Prolina/síntese química , Prolina/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-23933556

RESUMO

Literature data are controversial regarding the conformational equilibria of 2-acetylpyrrole (AP) and its N-methyl derivative (AMP). Now, a detailed study through infrared spectroscopy and theoretical calculations has shown that previous data were erroneously interpreted, since only a N,O-cis conformer is present in solution and that it is the stable conformer in the isolated state (ΔE(trans-cis) = 5.05 kcal mol(-1), for AP; ΔE(trans-cis) = 7.14 kcal mol(-1), for AMP). Carbonyl and NH absorption data in different solvents, supported by theoretical results taking into account the solvent effects [at IEFPCM-B3LYP/6-311++G(3df,3p) level of theory] clearly demonstrated that only the N,O-cis conformer is present in solution. However, a doublet was observed for AP, in CCl4, which can be attributed to this conformer and the lowest wavenumber component to the cis dimer form, stabilized through intermolecular hydrogen bonds (NH · · · OC). The overall preference for the N,O-cis conformer, in AP and AMP, as interpreted by the NBO analysis, indicated that the hyperconjugative effect is the main contribution to stabilize this rotamer, overcoming the possible steric repulsion. (13)C NMR experiments at low temperature in two different solvents (CS2/CDCl2 and acetone-d6) confirmed the occurrence of a single conformer since no separated signals were observed.


Assuntos
Pirróis/química , Isomerismo , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Espectrofotometria Infravermelho
17.
Artigo em Inglês | MEDLINE | ID: mdl-23261606

RESUMO

The s-cis-trans isomerism of two furan derivatives [2-acetyl- (AF) and 2-acetyl-5-methylfuran, (AMF)] was analyzed, using data from the deconvolution of their carbonyl absorption band in two solvents (CH(2)Cl(2) and CH(3)CN). These infrared data showed that the O,O-trans conformers predominate in the less polar solvent (CH(2)Cl(2)), but these equilibria change in a more polar solvent (CH(3)CN) leading to a slight predominance of the O,O-cis conformers, in agreement with the theoretical calculations. The later results were obtained using B3LYP-IEFPCM/6-31++g(3df,3p) level of theory, which taking into account the solvent effects at IEFPCM (Integral Equation Formalism Polarizable Continuum Model). Low temperature (13)CNMR spectra in CD(2)Cl(2) (ca. -75 °C) showed pairs of signals for each carbon, due to the known high energy barrier for the cis-trans interconversion leading to a large predominance of the trans isomers, which decreases in acetone-d(6). This was confirmed by their (1)HNMR spectra at the same temperatures. Moreover, despite the larger hyperconjugative interactions for the O,O-cis isomers, obtained from NBO data, these isomers are destabilized by the their Lewis energy.


Assuntos
Furanos/química , Acetilação , Isomerismo , Espectroscopia de Ressonância Magnética , Metilação , Conformação Molecular , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Artigo em Inglês | MEDLINE | ID: mdl-21620762

RESUMO

The s-cis-trans isomerisms of some derivatives of thiophene (2-acetyl, AT; 2-acetyl-5-bromo, ABT and 2-acetyl-5-chloro, ACT) were analyzed, using data from deconvolution of their carbonyl absorption bands in two solvents (CCl4 and CHCl3). These infrared data showed that the O,S-cis conformer largely predominates in the studied solvents and that the same occurs in the gas phase, as observed from theoretical calculations. The latter results were obtained using B3LYP/6-311++G(3df,3p) and MP2/6-311++G(3df,3p) levels of theory, with zero-point energy correction. Moreover, the use of the IEFPCM (Integral Equation Formalism Polarizable Continuum Model) to take into account the solvent effects, using the same levels of theory, confirmed the results observed from infrared data. Low temperature 13C NMR spectra in CS2/CD2Cl2 (-90 °C) and in acetone-d6 (-80°C) did not show pairs of signals for each carbon, due to the known low energy barrier (∼8 kcal mol(-1)) for the cis-trans interconversion. Data from NBO calculations show that the nO(2)→σS-C5* and nO(2)→σC2-C3* interactions occur only in the O,S-cis isomer and can explain its conformational preference.


Assuntos
Modelos Teóricos , Conformação Molecular , Solventes/química , Espectrofotometria Infravermelho , Tiofenos/química , Espectroscopia de Ressonância Magnética , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...