Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 329: 121988, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517581

RESUMO

AIMS: To evaluate BM-MSCs and their extracellular vesicles (EVs) preconditioned with hypoxia or normoxia in experimental pulmonary arterial hypertension (PAH). MAIN METHODS: BM-MSCs were isolated and cultured under normoxia (MSC-N, 21%O2) or hypoxia (MSC-H, 1%O2) for 48 h. EVs were then isolated from MSCs under normoxia (EV-N) or hypoxia (EV-H). PAH was induced in male Wistar rats (n = 35) with monocrotaline (60 mg/kg); control animals (CTRL, n = 7) were treated with saline. On day 14, PAH animals received MSCs or EVs under normoxia or hypoxia, intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time (PAT)/pulmonary ejection time (PET), and right ventricular hypertrophy (RVH) index were evaluated. Perivascular collagen content, vascular wall thickness, and endothelium-mesenchymal transition were analyzed. KEY FINDINGS: PAT/PET was lower in the PAH group (0.26 ± 0.02, P < 0.001) than in CTRLs (0.43 ± 0.02) and only increased in the EV-H group (0.33 ± 0.03, P = 0.014). MSC-N (32 ± 6 mmHg, P = 0.036), MSC-H (31 ± 3 mmHg, P = 0.019), EV-N (27 ± 4 mmHg, P < 0.001), and EV-H (26 ± 5 mmHg, P < 0.001) reduced RVSP compared with the PAH group (39 ± 4 mmHg). RVH was higher in the PAH group than in CTRL and reduced after all therapies. All therapies decreased perivascular collagen fiber content, vascular wall thickness, and the expression of endothelial markers remained unaltered; only MSC-H and EV-H decreased expression of mesenchymal markers in pulmonary arterioles. SIGNIFICANCE: MSCs and EVs, under normoxia or hypoxia, reduced right ventricular hypertrophy, perivascular collagen, and vessel wall thickness. Under hypoxia, MSCs and EVs were more effective at improving endothelial to mesenchymal transition in experimental PAH.


Assuntos
Vesículas Extracelulares , Hipertensão Pulmonar , Células-Tronco Mesenquimais , Hipertensão Arterial Pulmonar , Ratos , Animais , Masculino , Hipertensão Arterial Pulmonar/terapia , Hipertensão Arterial Pulmonar/metabolismo , Hipertrofia Ventricular Direita , Medula Óssea/metabolismo , Células Cultivadas , Ratos Wistar , Hipertensão Pulmonar Primária Familiar , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Hipóxia/metabolismo
2.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192337

RESUMO

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Ratos , Masculino , Proteômica , Dióxido de Carbono/metabolismo , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo
3.
Pharmacol Res Perspect ; 9(5): e00873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34632734

RESUMO

We hypothesized whether propofol or active propofol component (2,6-diisopropylphenol [DIPPH] and lipid excipient [LIP-EXC]) separately may alter inflammatory mediators expressed by macrophages and neutrophils in lean and obese rats. Male Wistar rats (n = 10) were randomly assigned to receive a standard (lean) or obesity-inducing diet (obese) for 12 weeks. Animals were euthanized, and alveolar macrophages and neutrophils from lean and obese animals were exposed to propofol (50 µM), active propofol component (50 µM, 2,6-DIPPH), and lipid excipient (soybean oil, purified egg phospholipid, and glycerol) for 1 h. The primary outcome was IL-6 expression after propofol and its components exposure by alveolar macrophages extracted from bronchoalveolar lavage fluid. The secondary outcomes were the production of mediators released by macrophages from adipose tissue, and neutrophils from lung and adipose tissues, and neutrophil migration. IL-6 increased after the exposure to both propofol (median [interquartile range] 4.14[1.95-5.20]; p = .04) and its active component (2,6-DIPPH) (4.09[1.67-5.91]; p = .04) in alveolar macrophages from obese animals. However, only 2,6-DIPPH increased IL-10 expression (7.59[6.28-12.95]; p = .001) in adipose tissue-derived macrophages. Additionally, 2,6-DIPPH increased C-X-C chemokine receptor 2 and 4 (CXCR2 and CXCR4, respectively) in lung (10.08[8.23-29.01]; p = .02; 1.55[1.49-3.43]; p = .02) and adipose tissues (8.78[4.15-11.57]; p = .03; 2.86[2.17-3.71]; p = .01), as well as improved lung-derived neutrophil migration (28.00[-3.42 to 45.07]; p = .001). In obesity, the active component of propofol affected both the M1 and M2 markers as well as neutrophils in both alveolar and adipose tissue cells, suggesting that lipid excipient may hinder the effects of active propofol.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Anestésicos Intravenosos/farmacologia , Excipientes/farmacologia , Interleucina-6/metabolismo , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Obesidade/metabolismo , Propofol/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Glicerol/farmacologia , Interleucina-10/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Fosfolipídeos/farmacologia , Ratos , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Receptores de Interleucina-8B/efeitos dos fármacos , Receptores de Interleucina-8B/metabolismo , Óleo de Soja/farmacologia
4.
Eur J Pharmacol ; 887: 173438, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795515

RESUMO

Despite advances in medical therapy, pulmonary arterial hypertension (PAH) remains an inexorably progressive and highly lethal disease. Signal transducer and activator of transcription (STAT)-3 is one of the main intracellular transcription factors implicated in PAH vascular remodeling. We hypothesized that niclosamide, a STAT3 inhibitor, would reduce vascular remodeling in an established pulmonary arterial hypertension model, thus enhancing cardiac function. Male Wistar rats were treated either with monocrotaline (60 mg/kg), to induce PAH, or saline (C group) by intraperitoneal injection. On day 14, PAH animals were randomly assigned to receive oral (1) saline (PAH-SAL); (2) niclosamide (75 mg/kg/day) (PAH-NICLO); (3) sildenafil (20 mg/kg/day) (PAH-SIL); or (4) niclosamide + sildenafil (PAH-NICLO + SIL), once daily for 14 days. On day 28, right ventricular systolic pressure was lower in all treated groups compared to PAH-SAL. Pulmonary vascular collagen content was lower in PAH-NICLO (37 ± 3%) and PAH-NICLO + SIL (37 ± 6%) compared to PAH-SAL (68 ± 4%), but not in PAH-SIL (52 ± 1%). CD-34, an endothelial cell marker, was higher, while vimentin, a mesenchymal cell marker, was lower in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL, suggesting attenuation of endothelial-mesenchymal transition. Expression of STAT3 downstream targets such as transforming growth factor (TGF)-ß, hypoxia-inducible factor (HIF)-1, and provirus integration site for Moloney murine leukemia virus (PIM-1) in lung tissue was reduced in PAH-NICLO and PAH-NICLO + SIL compared to PAH-SAL. In conclusion, niclosamide, with or without sildenafil, mitigated vascular remodeling and improved right ventricle systolic pressure. This new role for a well-established drug may represent a promising therapy for PAH.


Assuntos
Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Niclosamida/uso terapêutico , Hipertensão Arterial Pulmonar/prevenção & controle , Remodelação Vascular/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Pulmão/patologia , Masculino , Monocrotalina/toxicidade , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Niclosamida/farmacologia , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/patologia , Ratos , Ratos Wistar , Remodelação Vascular/fisiologia
5.
Br J Pharmacol ; 176(23): 4462-4473, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31351013

RESUMO

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a progressive disease associated with high morbidity and mortality, despite advances in medical therapy. We compared the effects of infigratinib (NVP-BGJ398), a new FGF receptor-1 inhibitor, with or without the PDE-5 inhibitor sildenafil, on vascular function and remodelling as well as on gene expression of signal transducers for receptors of TGF-ß (Smads-1/2/4) and transcription factor of endothelial-mesenchymal transition (Twist-1) in established experimental PAH. Types I and III pro-collagen and TGF-ß expressions in lung fibroblasts were analysed in vitro after the different treatments. EXPERIMENTAL APPROACH: PAH was induced in male Wistar rats with monocrotaline. 14 days later, treatments [sildenafil (SIL), infigratinib (INF) or their combination (SIL+INF)] were given for another 14 days. On Day 28, echocardiography and haemodynamic assays were performed, and lungs and pulmonary vessels were removed for analysis by histology, immunohistochemistry and RT-PCR. Fibroblasts prepared from PAH lungs were also analysed for TGF-ß and pro-collagen. KEY RESULTS: Only the combination of infigratinib and sildenafil significantly improved right ventricular systolic pressure and vascular remodelling parameters (right ventricular hypertrophy, smooth muscle α-actin, vessel wall thickness, and vascular collagen content). Infigratinib may act by reducing gene expression of Smads-1/4 and Twist-1 in lung tissue, as well as TGF-ß and types I and III pro-collagen in lung fibroblasts. CONCLUSIONS AND IMPLICATIONS: In this model of monocrotaline-induced PAH, the combination of the new inhibitor of FGF receptor-1, infigratinib, and sildenafil effectively improved haemodynamics and decreased vascular remodelling.


Assuntos
Anti-Hipertensivos/farmacologia , Compostos de Fenilureia/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Citrato de Sildenafila/farmacologia , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Injeções Intraperitoneais , Masculino , Monocrotalina , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/química , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/química , Ratos , Ratos Wistar , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Citrato de Sildenafila/administração & dosagem
6.
Respir Res ; 18(1): 185, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29100513

RESUMO

BACKGROUND: Emphysema is a progressive disease characterized by irreversible airspace enlargement followed by a decline in lung function. It also causes extrapulmonary effects, such as loss of body mass and cor pulmonale, which are associated with shorter survival and worse clinical outcomes. Ghrelin, a growth-hormone secretagogue, stimulates muscle anabolism, has anti-inflammatory effects, promotes vasodilation, and improves cardiac performance. Therefore, we hypothesized that ghrelin might reduce lung inflammation and remodelling as well as improve lung mechanics and cardiac function in experimental emphysema. METHODS: Forty female C57BL/6 mice were randomly assigned into two main groups: control (C) and emphysema (ELA). In the ELA group (n=20), animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. C animals (n=20) received saline alone (50 µL) using the same protocol. Two weeks after the last instillation of saline or PPE, C and ELA animals received ghrelin or saline (n=10/group) intraperitoneally (i.p.) daily, during 3 weeks. Dual-energy X-ray absorptiometry (DEXA), echocardiography, lung mechanics, histology, and molecular biology were analysed. RESULTS: In elastase-induced emphysema, ghrelin treatment decreased alveolar hyperinflation and mean linear intercept, neutrophil infiltration, and collagen fibre content in the alveolar septa and pulmonary vessel wall; increased elastic fibre content; reduced M1-macrophage populations and increased M2 polarization; decreased levels of keratinocyte-derived chemokine (KC, a mouse analogue of interleukin-8), tumour necrosis factor-α, and transforming growth factor-ß, but increased interleukin-10 in lung tissue; augmented static lung elastance; reduced arterial pulmonary hypertension and right ventricular hypertrophy on echocardiography; and increased lean mass. CONCLUSION: In the elastase-induced emphysema model used herein, ghrelin not only reduced lung damage but also improved cardiac function and increased lean mass. These findings should prompt further studies to evaluate ghrelin as a potential therapy for emphysema.


Assuntos
Grelina/uso terapêutico , Hipertrofia Ventricular Direita/tratamento farmacológico , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/tratamento farmacológico , Animais , Feminino , Grelina/farmacologia , Hipertrofia Ventricular Direita/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/diagnóstico por imagem , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...