RESUMO
Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 µg/mL and 31.25 µg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.
Assuntos
Doença de Chagas , Própole , Tripanossomicidas , Trypanosoma cruzi , Humanos , Própole/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Flavonoides/química , Extratos Vegetais/farmacologia , Tripanossomicidas/químicaRESUMO
Opportunistic fungal infections represent a global health problem, mainly for immunocompromised individuals. New therapeutical options are needed since several fungal strains show resistance to clinically available antifungal agents. 2-Thiazolylhydrazones are well-known as potent compounds against Candida and Cryptococcus species. A scaffold-focused drug design using machine-learning models was established to optimize the 2-thiazolylhydrazone skeleton and obtain novel compounds with higher potency, better solubility in water, and enhanced absorption. Twenty-nine novel compounds were obtained and most showed low micromolar MIC values against different species of Candida and Cryptococcus spp., including Candida auris, an emerging multidrug-resistant yeast. Among the synthesized compounds, 2-thiazolylhydrazone 28 (MIC value ranging from 0.8 to 52.17 µM) was selected for further studies: cytotoxicity evaluation, permeability study in Caco-2 cell model, and in vivo efficacy against Cryptococcus neoformans in an invertebrate infection model. All results obtained indicate the great potential of 28 as a novel antifungal agent.
Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Células CACO-2 , Testes de Sensibilidade Microbiana , Candida , Micoses/tratamento farmacológicoRESUMO
Chagas disease (CD) is a neglected tropical disease endemic in 21 countries and affects about 8 million people around the world. The pharmacotherapy for this disease is limited to two drugs (Benznidazole and Nifurtimox) and both are associated with important limitations, as low cure rate in the chronic phase of the disease, high toxicity and increasing resistance by Trypanosoma cruzi. Recently, we reported a bioactive 1,2,3-triazole (compound 35) active in vitro (IC50 42.8 µM) and in vivo (100 mg/kg) against T. cruzi Y strains and preliminary in silico studies suggested the cysteine protease cruzain as a possible target. Considering these initial findings, we describe here the design and synthesis of new 1,2,3-triazoles derivatives of our hit compound (35). The triazoles were initially evaluated against healthy cells derived from neonatal rat cardiomyoblasts (H9c2 cells) to determine their cytotoxicity and against epimastigotes forms of T. cruzi Y strain. The most active triazoles were compounds 26 (IC50 19.7 µM) and 27 (IC50 7.3 µM), while benznidazole was active at 21.6 µM. Derivative 27 showed an interesting selectivity index considering healthy H9c2 cells (>77). Promising activities against trypomastigotes forms of the parasite were also observed for triazoles 26 (IC50 20.74 µM) and 27 (IC50 8.41 µM), mainly 27 which showed activity once again higher than that observed for benznidazole (IC50 12.72 µM). While docking results suggested cruzain as a potential target for these compounds, no significant enzyme inhibition was observed in vitro, indicating that their trypanocidal activity is related to another mode of action. Considering the promising in vitro results of triazoles 26 and 27, the in vivo toxicity was initially verified based on the evaluation of behavioral and physiological parameters, mortality, effect in body weight gain, and through the measurement of AST/ALT enzymes, which are markers of liver toxicity. All these evaluations pointed to a good tolerability of the animals, especially considering triazole 27. A reduction in parasitemia was observed among animals treated with triazole 27, but not among those treated with derivative 26. Regarding the dosage, derivative 27 (100 mg/kg) was the most active sample against T. cruzi infection, showing a 99.4% reduction in parasitemia peak. Triazole 27 at a dosage of 100 mg/kg influenced the humoral immune response and reduced myocarditis in the animals, bringing antibody levels closer to those observed among healthy mice. Altogether, our results indicate compound 27 as a new lead for the development of drug candidates to treat Chagas disease.
Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Ratos , Animais , Eugenol/farmacologia , Triazóis/farmacologia , Triazóis/uso terapêutico , Parasitemia/tratamento farmacológico , Tripanossomicidas/toxicidade , Doença de Chagas/tratamento farmacológicoRESUMO
This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.
Assuntos
Antifúngicos , Cryptococcus gattii , Antifúngicos/farmacologia , Antifúngicos/química , Azóis/farmacologia , Azóis/química , Miconazol/farmacologia , Candida , Fluconazol , Eugenol/farmacologia , Eugenol/química , Testes de Sensibilidade Microbiana , Candida albicans , Imidazóis/farmacologia , ErgosterolRESUMO
This work describes the synthesis, anti-Candida, and molecular modeling studies of eighteen new glucosyl-1,2,3-triazoles derived from eugenol and correlated phenols. The new compounds were characterized by combined Fourier Transform Infrared, 1 H and 13 C nuclear magnetic resonance and spectroscopy of high-resolution mass spectrometry. The synthesized compounds did not show significant cytotoxicity against healthy fibroblast human cells (MCR-5) providing interesting selectivity indexes (SI) to active compounds. Considering the antifungal activity, nine compounds showed anti-Candida potential and the peracetylated triazoles 17 and 18 were the most promising ones. Eugenol derivative 17 was active against three species of Candida at 26.1-52.1 µM. This compound was four times more potent than fluconazole against Candida krusei and less toxic (SI > 6.6) against the MCR-5 cells than fluconazole (SI > 3.3) considering this strain. Dihydroeugenol derivative 18 showed similar activity to 17 and was four times more potent and less toxic than fluconazole against C. krusei. The deacetylated glucosides and non-glucosylated corresponding derivatives did not show considerable antifungal action, suggesting that the acetyl groups are essential for their anti-Candida activity. Molecular docking coupled with molecular dynamics showed that 14α-lanosterol demethylase is a feasible molecular target, since 17 and 18 could bind to this enzyme once deacetylated in vivo, thereby acting as prodrugs. Also, these studies demonstrated the importance of hydrophobic substituents at the phenyl ring.
Assuntos
Antifúngicos/síntese química , Eugenol/química , Triazóis/síntese química , Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/citologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Triazóis/farmacologiaRESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China and its spread worldwide has become one of the biggest health problem due to the lack of knowledge about an effective chemotherapy. Based on the current reality of the SARS-CoV-2 pandemic, this study aimed to make a review literature about potential anti-coronavirus natural compounds guided by an in silico study. In the first step, essential oils from native species found in the Brazilian herbal medicine market and Brazilian species that have already shown antiviral potential were used as source for the literature search and compounds selection. Among these compounds, 184 showed high antiviral potential against rhinovirus or picornavirus by quantitative structure-activity relationship analysis. (E)-α-atlantone; 14-hydroxy-α-muurolene; allo-aromadendrene epoxide; amorpha-4,9-dien-2-ol; aristochene; azulenol; germacrene A; guaia-6,9-diene; hedycaryol; humulene epoxide II; α-amorphene; α-cadinene; α-calacorene and α-muurolene showed by a molecular docking study the best result for four target proteins that are essential for SARS-CoV-2 lifecycle. In addition, other parameters obtained for the selected compounds indicated low toxicity and showed good probability to achieve cell permeability and be used as a drug. These results guided the second literature search which included other species in addition to native Brazilian plants. The majority presence of any of these compounds was reported for essential oils from 45 species. In view of the few studies relating essential oils and antiviral activity, this review is important for future assays against the new coronavirus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11101-021-09754-4.
RESUMO
Quantitative nuclear magnetic resonance (qNMR) is an analytical technique that offers numerous advantages in pharmaceutical applications including minimum sample preparation and rapid data collection times with no need for response factor corrections, being a powerful tool for assaying drug content in both drug discovery and early drug development. In the present work, we have applied qNMR, using both the internal standard and the electronic reference to access in vivo concentrations 2 calibration methods, to assess the purity of RI76, a novel antifungal drug candidate. NMR acquisition and processing parameters were optimized in order to obtain spectra with intense, well-resolved signals of completely relaxed nuclei. The analytical method was validated following current guidelines, demonstrating selectivity, linearity, accuracy, precision, and robustness. The calibration approaches were statistically compared, and no significant difference was observed when comparing the obtained results and their dispersion in terms of relative standard deviation. The proposed qNMR method may, therefore, be used for both qualitative and quantitative assessments of RI76 in early drug development and for characterization of this compound.
Assuntos
Antifúngicos/química , Espectroscopia de Ressonância Magnética/métodos , Tiazóis/química , Acetanilidas/química , Acetanilidas/normas , Calibragem , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Reprodutibilidade dos TestesRESUMO
Analogues of 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]indol-4-amine 1, a known cruzain inhibitor, were synthesized using a molecular simplification strategy. Five series of analogues were obtained: indole, pyrimidine, quinoline, aniline and pyrrole derivatives. The activity of the compounds was evaluated against the enzymes cruzain and rhodesain as well as against Trypanosoma cruzi amastigote and trypomastigote forms. The 4-aminoquinoline derivatives showed promising activity against both enzymes, with IC50 values ranging from 15 to 125µM. These derivatives were selective inhibitors for the parasitic proteases, being unable to inhibit mammalian cathepsins B and S. The most active compound against cruzain (compound 5a; IC50=15µM) is considerably more synthetically accessible than 1, while retaining its ligand efficiency. As observed for the original lead, compound 5a was shown to be a competitive enzyme inhibitor. In addition, it was also active against T. cruzi (IC50=67.7µM). Interestingly, the pyrimidine derivative 4b, although inactive in enzymatic assays, was highly active against T. cruzi (IC50=3.1µM) with remarkable selectivity index (SI=128) compared to uninfected fibroblasts. Both 5a and 4b exhibit drug-like physicochemical properties and are predicted to have a favorable ADME profile, therefore having great potential as candidates for lead optimization in the search for new drugs to treat Chagas disease.