Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(48): 53932-53941, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203211

RESUMO

Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline ß-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic ß-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the ß-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline ß-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.

2.
J Mech Behav Biomed Mater ; 103: 103582, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090911

RESUMO

Niobium oxide coatings deposited on Ti6Al4V substrates by electron beam deposition and annealed in air at 600 °C and 800 °C were evaluated for their suitability towards dental, maxillofacial or orthopaedic implant applications. A detailed physico-chemical properties investigation was carried out in order to determine their elemental and phase composition, surface morphology and roughness, mechanical properties, wettability, and corrosion resistance in simulated body fluid solution (pH = 7.4) at room temperature. The biocompatibility of the bare Ti6Al4V substrate and coated surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human osteosarcoma cells (MG-63) after 72 h of incubation. The coatings annealed at 800 °C exhibit more phase pure nanocrystalline Nb2O5 surfaces with enhanced wettability, reduced porosity and enhanced corrosion resistance properties making them good candidate for dental, maxillofacial or orthopaedic implant applications.


Assuntos
Materiais Revestidos Biocompatíveis , Nióbio , Corrosão , Elétrons , Humanos , Teste de Materiais , Propriedades de Superfície , Titânio
3.
ACS Appl Mater Interfaces ; 11(38): 35095-35104, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31462042

RESUMO

In recent years, ß-Ga2O3/NiO heterojunction diodes have been studied, but reports in the literature lack an investigation of an epitaxial growth process of high-quality single-crystalline ß-Ga2O3/NiO thin films via electron microscopy analysis and the fabrication and characterization of an optoelectronic device based on the resulting heterojunction stack. This work investigates the thin-film growth of a heterostructure stack comprising n-type ß-Ga2O3 and p-type cubic NiO layers grown consecutively on c-plane sapphire using pulsed laser deposition, as well as the fabrication of solar-blind ultraviolet-C photodetectors based on the resulting p-n junction heterodiodes. Several characterization techniques were employed to investigate the heterostructure, including X-ray crystallography, ion beam analysis, and high-resolution electron microscopy imaging. X-ray diffraction analysis confirmed the single-crystalline nature of the grown monoclinic and cubic (2̅01) ß-Ga2O3 and (111) NiO films, respectively, whereas electron microscopy analysis confirmed the sharp layer transitions and high interface qualities in the NiO/ß-Ga2O3/sapphire double-heterostructure stack. The photodetectors exhibited a peak spectral responsivity of 415 mA/W at 7 V reverse-bias voltage for a 260 nm incident-light wavelength and 46.5 pW/µm2 illuminating power density. Furthermore, we also determined the band offset parameters at the thermodynamically stable heterointerface between NiO and ß-Ga2O3 using high-resolution X-ray photoelectron spectroscopy. The valence and conduction band offsets values were found to be 1.15 ± 0.10 and 0.19 ± 0.10 eV, respectively, with a type-I energy band alignment.

4.
ACS Appl Mater Interfaces ; 9(35): 29857-29862, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28820932

RESUMO

Titanium oxynitride (TiOxNy) thin films are fabricated using reactive magnetron sputtering. The mechanism of their growth formation is explained, and their optical properties are presented. The films grown when the level of residual oxygen in the background vacuum was between 5 nTorr to 20 nTorr exhibit double epsilon-near-Zero (2-ENZ) behavior with ENZ1 and ENZ2 wavelengths tunable in the 700-850 and 1100-1350 nm spectral ranges, respectively. Samples fabricated when the level of residual oxygen in the background vacuum was above 2 × 10-8 Torr exhibit nonmetallic behavior, while the layers deposited when the level of residual oxygen in the background vacuum was below 5 × 10-9 Torr show metallic behavior with a single ENZ value. The double ENZ phenomenon is related to the level of residual oxygen in the background vacuum and is attributed to the mixture of TiN and TiOxNy and TiOx phases in the films. Varying the partial pressure of nitrogen during the deposition can further control the amount of TiN, TiOx, and TiOxNy compounds in the films and, therefore, tune the screened plasma wavelengths. A good approximation of the ellipsometric behavior is achieved with Maxwell-Garnett theory for a composite film formed by a mixture of TiO2 and TiN phases suggesting that double ENZ TiOxNy films are formed by inclusions of TiN within a TiO2 matrix. These oxynitride compounds could be considered as new materials exhibiting double ENZ in the visible and near-IR spectral ranges. Materials with ENZ properties are advantageous for designing the enhanced nonlinear optical response, metasurfaces, and nonreciprocal behavior.

5.
Sci Rep ; 5: 9118, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766781

RESUMO

Several new plasmonic materials have recently been introduced in order to achieve better temperature stability than conventional plasmonic metals and control field localization with a choice of plasma frequencies in a wide spectral range. Here, epitaxial SrRuO3 thin films with low surface roughness fabricated by pulsed laser deposition are studied. The influence of the oxygen deposition pressure (20-300 mTorr) on the charge carrier dynamics and optical constants of the thin films in the near-infrared spectral range is elucidated. It is demonstrated that SrRuO3 thin films exhibit plasmonic behavior of the thin films in the near-infrared spectral range with the plasma frequency in 3.16-3.86 eV range and epsilon-near-zero wavelength in 1.11-1.47 µm range that could be controlled by the deposition conditions. The possible applications of these films range from the heat-generating nanostructures in the near-infrared spectral range, to metamaterial-based ideal absorbers and epsilon-near-zero components, where the interplay between real and imaginary parts of the permittivity in a given spectral range is needed for optimizing the spectral performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...