Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Drug Metab Dispos ; 41(1): 238-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23118327

RESUMO

Compound 1 [(E)-4-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1S,4S)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], a new, potent, selective anaplastic lymphoma kinase (ALK) inhibitor with potential application for the treatment of cancer, was selected as candidate to advance into efficacy studies in mice. However, the compound underwent mouse-specific enzymatic hydrolysis in plasma to a primary amine product (M1). Subsequent i.v. pharmacokinetics studies in mice showed that compound 1 had high clearance (CL) and a short half-life. Oral dose escalation studies in mice indicated that elimination of compound 1 was saturable, with higher doses achieving sufficient exposures above in vitro IC(50). Chemistry efforts to minimize hydrolysis resulted in the discovery of several analogs that were stable in mouse plasma. Three were taken in vivo into mice and showed decreased CL corresponding to increased in vitro stability in plasma. However, the more stable compounds also showed reduced potency against ALK. Kinetic studies in NADPH-fortified and unfortified microsomes and plasma produced submicromolar K(m) values and could help explain the saturation of elimination observed in vivo. Predictions of CL based on kinetics from hydrolysis and NADPH-dependent pathways produced predicted hepatic CL values of 3.8, 3.0, 1.6, and 1.2 l/h⋅kg for compound 1, compound 2 [(E)-3,5-difluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], compound 3 [(E)-3-chloro-5-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], and compound 4 [(E)-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)-3-(trifluoromethyl)benzamide], respectively. The in vivo observed CLs for compounds 1, 2, 3, and 4 were 5.52, 3.51, 2.14, and 2.66 l/h⋅kg, respectively. These results indicate that in vitro metabolism kinetic data, incorporating contributions from both hydrolysis and NADPH-dependent metabolism, could be used to predict the systemic CL of compounds cleared via hydrolytic pathways provided that the in vitro assays thoroughly investigate the processes, including the contribution of other metabolic pathways and the possibility of saturation kinetics.


Assuntos
Inibidores de Proteínas Quinases/farmacocinética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Área Sob a Curva , Cromatografia Líquida , Hidrólise , Concentração Inibidora 50 , Masculino , Camundongos , Inibidores de Proteínas Quinases/sangue , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
2.
J Med Chem ; 55(14): 6523-40, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734674

RESUMO

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Especificidade por Substrato
3.
J Med Chem ; 55(4): 1698-705, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22263917

RESUMO

Piperidine carboxamide 1 was identified as a novel inhibitor of anaplastic lymphoma kinase (ALK enzyme assay IC(50) = 0.174 µM) during high throughput screening, with selectivity over the related kinase insulin-like growth factor-1 (IGF1R). The X-ray cocrystal structure of 1 with the ALK kinase domain revealed an unusual DFG-shifted conformation, allowing access to an extended hydrophobic pocket. Structure-activity relationship (SAR) studies were focused on the rapid parallel optimization of both the right- and left-hand side of the molecule, culminating in molecules with improved potency and selectivity over IGF1R.


Assuntos
Amidas/síntese química , Antineoplásicos/síntese química , Piperidinas/síntese química , Pirimidinas/síntese química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Quinase do Linfoma Anaplásico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Piperidinas/química , Piperidinas/farmacologia , Conformação Proteica , Pirimidinas/química , Pirimidinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
4.
J Biomol Screen ; 16(2): 164-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21297104

RESUMO

Anaplastic lymphoma kinase (ALK) when expressed as a fusion protein with nucleophosmin (NPM) has been implicated as a driving oncogene in a subset of lymphomas. Recent reports of ALK expression in a number of other cancers have raised the possibility that an ALK inhibitor may benefit patients with these diseases as well. In a campaign to identify and develop a selective ALK inhibitor, 2 assays were devised to measure the phosphorylation of tyrosine residue 1604 of ALK (pY(1604) ALK). Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen(®)) and phosflow platforms were used to detect modulation of pY(1604) ALK to determine the relative potency of a set of small-molecule inhibitors. Prior to making use of these assays in diverse settings, the authors attempted to ensure their equivalence with a direct comparison of their performance. The pY(1604) ALK assays correlated well both with each other and with assays of ALK enzyme activity or ALK-dependent cell proliferation. The AlphaScreen(®) assay was amenable to automation and enabled rapid, high-throughput compound assessment in an NPM-ALK-driven cell line, whereas the phosflow assay enabled the authors to characterize the activity of compounds with respect to their impact on targeted enzymes and pathways. Results show that both AlphaScreen(®) and phosflow ALK assays exhibited diverse characteristics that made them desirable for different applications but were determined to be equally sensitive and robust in the detection of inhibition of pY(1604) ALK.


Assuntos
Bioensaio , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Crizotinibe , Inibidores Enzimáticos/farmacologia , Humanos , Piperidinas/farmacologia , Proteínas Tirosina Quinases/metabolismo , Pirazóis , Piridinas/farmacologia , Receptores Proteína Tirosina Quinases
5.
Blood ; 110(10): 3753-62, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17698635

RESUMO

The acquired activation of stem cell leukemia (SCL) during T lymphopoiesis is a common event in T-cell acute lymphoblastic leukemia (T-ALL). Here, we generated tamoxifen (TAM)-inducible transgenic mice (lck-ER(T2)-SCL) to study the consequences of acquired SCL activation during T-cell development. Aberrant activation of SCL in thymocytes resulted in the accumulation of immature CD4(+)CD8(+) (double-positive, DP) cells by preventing normal surface expression of the T-cell receptor alphabeta (TCRalphabeta) complex. SCL-induced immature DP cells were further characterized by up-regulated NOTCH1 and generated noncycling polyclonal CD8(+)TCRbeta(low) cells. The prevalence of these cells was SCL dependent because TAM withdrawal resulted in their disappearance. Furthermore, we observed that SCL activation led to a dramatic up-regulation of NOTCH1 target genes (Hes-1, Deltex1, and CD25) in thymocytes. Strikingly, NOTCH1 target gene up-regulation was already observed after short-term SCL induction, implying that enhanced NOTCH signaling is mediated by SCL and is not dependent on secondary genetic events. These data represent the basis for a novel pathway of SCL-induced leukemogenesis and provide a functional link between SCL and NOTCH1 during this process.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transformação Celular Neoplásica/metabolismo , Leucemia de Células T/genética , Proteínas Proto-Oncogênicas/genética , Receptor Notch1/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Transdução de Sinais/fisiologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Timo/citologia , Timo/embriologia
6.
Biochem Biophys Res Commun ; 313(2): 327-35, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14684164

RESUMO

Mapping of transcriptional control elements normally depends on the generation of a series of deletion mutants. The consequences of particular deletions are then functionally assessed by their ability to alter gene expression. The information derived from such investigations provides a general regulatory profile of the gene of interest, as well as generating a focus for future experiments. Due to the limitations of conventional DNA cloning methods, it has previously not been possible to use such an approach to rapidly assess the role of long-range regulatory elements that frequently lie further than 20 kb away from the coding region. In order to identify regulatory elements of the proto-oncogene HOX11 that may be mutated in a subset of childhood T-cell acute lymphoblastic leukaemia specimens, we generated nested deletions from a P1 artificial chromosome (PAC). This clone contained 95 kilobases (kb) of the HOX11 locus at 10q24; including 63 kb of 5' regulatory DNA. The deletion series was produced by the use of a recombination based cloning system and clones were subsequently transfected into mammalian cells. We have identified several long-range regulatory elements that mediate transcriptional control of HOX11. This approach is simple, rapid, and inexpensive. Furthermore, it generates multiple deletion clones in a single experiment. This novel approach opens up a new avenue for investigating long-range transcription control. Additionally, by allowing analysis of these elements in the natural context of large integrants the approach does not require the use of artificial extrachromosomal elements. This methodology can be applied to any gene cloned into a PAC or BAC vector and could also be useful in identifying appropriately sized deletion mutants for functional testing in transgenic models.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cromossomos Artificiais Humanos , Clonagem Molecular , Primers do DNA/genética , Elementos de DNA Transponíveis , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Citometria de Fluxo , Regulação Leucêmica da Expressão Gênica , Humanos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas , Recombinação Genética , Deleção de Sequência , Transfecção
7.
Genet Mol Res ; 3(4): 456-62, 2004 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-15688312

RESUMO

Inducible transgenic mouse models that impose a constraint on both temporal and spatial expression of a given transgene are invaluable. These animals facilitate experiments that can address the role of a specific cell or group of cells within an animal or in a particular window of time. A common approach to achieve inducibility involves the site-specific recombinase 'Cre', which is linked to a modified version of one of various steroid hormone-binding domains. Thus, the expression of Cre is regulated such that a functional nuclear transgene product can only be generated with the addition of an exogenous ligand. However, critical requirements of this system are that the nuclear localization of the transgene product be tightly regulated, that the dosage of the inducing agent remains consistent among experimental animals and that the transgene cassette cannot express in the absence of the inducing agent. We used the Cre ER(T2) cassette, which is regulated by the addition of the estrogen antagonist tamoxifen to determine whether cross-contamination of tamoxifen between animals housed together can be a significant source of spurious results. We found that cross-contamination of exogenous tamoxifen does occur. It occurred in all animals tested. We suggest that the mechanism of contamination is through exposure to tamoxifen in the general environment and/or to coprophagous behavior. These results have important implications for the interpretation and design of experiments that use 'inducible' transgenic animals.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Integrases/genética , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Transgenes/efeitos dos fármacos , Proteínas Virais/genética , Animais , Citometria de Fluxo , Integrases/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Cauda/efeitos dos fármacos , Cauda/patologia , Transgenes/genética , Proteínas Virais/efeitos dos fármacos
8.
Genet. mol. res. (Online) ; 3(4): 456-462, 2004. tab, graf
Artigo em Inglês | LILACS | ID: lil-410890

RESUMO

Inducible transgenic mouse models that impose a constraint on both temporal and spatial expression of a given transgene are invaluable. These animals facilitate experiments that can address the role of a specific cell or group of cells within an animal or in a particular window of time. A common approach to achieve inducibility involves the site-specific recombinase ‘Cre’, which is linked to a modified version of one of various steroid hormone-binding domains. Thus, the expression of Cre is regulated such that a functional nuclear transgene product can only be generated with the addition of an exogenous ligand. However, critical requirements of this system are that the nuclear localization of the transgene product be tightly regulated, that the dosage of the inducing agent remains consistent among experimental animals and that the transgene cassette cannot express in the absence of the inducing agent. We used the Cre ER(T2) cassette, which is regulated by the addition of the estrogen antagonist tamoxifen to determine whether cross-contamination of tamoxifen between animals housed together can be a significant source of spurious results. We found that cross-contamination of exogenous tamoxifen does occur. It occurred in all animals tested. We suggest that the mechanism of contamination is through exposure to tamoxifen in the general environment and/or to coprophagous behavior. These results have important implications for the interpretation and design of experiments that use ‘inducible’ transgenic animals.


Assuntos
Animais , Camundongos , Regulação Enzimológica da Expressão Gênica , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Transgenes/efeitos dos fármacos , Proteínas Virais/genética , Citometria de Fluxo , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Cauda/efeitos dos fármacos , Cauda/patologia , Transgenes/genética , Proteínas Virais/efeitos dos fármacos
9.
Gene ; 323: 89-99, 2003 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-14659882

RESUMO

HOX11 is a proto-oncogene, which is silent in normal mature T-cells, while being aberrantly activated in T-cell acute lymphoblastic leukaemia (T-ALL) by translocations t(10;14)(q24;q11) or t(7;10)(q35;q24). Although many oncogenes are expressed in alternative forms in cancer, thus far, only one form of the human HOX11 transcript has been reported. We describe here the identification of three alternative transcripts of the HOX11 proto-oncogene, expressed in primary T-ALL specimens. Using rapid amplification of cDNA ends (RACE) and targeted RT-PCR, we have sequenced 23 individual cDNA clones characterising these novel transcripts. Northern hybridisation identified particular novel exons expressed in T-ALL, which are not expressed in normal T-cells. To date, aberrant expression of HOX11 has only been associated with leukaemia. Our survey of a range of neuroblastoma and primitive neuroectodermal tumour (PNET) cell lines demonstrated the expression of these novel HOX11 transcripts in tumours of neural origin, while their expression was not detected in normal brain tissues. Strikingly, the dominant transcript in these neural tumour cell lines is more than 1 kb larger than the dominant transcript in T-ALL. These observations, combined with sequence data from several EST clones derived from medulloblastoma cDNA libraries, support a new hypothesis that HOX11 may also function as a neural oncogene or brain tumour marker.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia-Linfoma de Células T do Adulto/genética , Neuroblastoma/genética , Proteínas Oncogênicas/genética , Northern Blotting , Linhagem Celular , Linhagem Celular Tumoral , Criança , DNA Complementar/química , DNA Complementar/genética , Etiquetas de Sequências Expressas , Humanos , Leucemia-Linfoma de Células T do Adulto/patologia , Dados de Sequência Molecular , Neuroblastoma/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...