Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5503, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448458

RESUMO

The proposed chloride salt-bearing deposits on Mars have an enigmatic composition due to the absence of distinct spectral absorptions for the unique mineral at all wavelengths investigated. We report on analyses of remote visible-wavelength spectroscopic observations that exhibit properties indicative of the mineral halite (NaCl) when irradiated. Visible spectra of halite are generally featureless, but when irradiated by high-energy particles they develop readily-identifiable spectral alterations in the form of color centers. Consistent spectral characteristics observed in the reflectance data of the chloride salt-bearing deposits support the presence of radiation-formed color centers of halite on the surface of Mars. We observe a seasonal cycle of color center formation with higher irradiated halite values during winter months, with the colder temperatures interpreted as increasing the formation efficiency and stability. Irradiated halite identified on the surface of Mars suggests that the visible surface is being irradiated to the degree that defects are forming in alkali halide crystal structures.

2.
Rev Sci Instrum ; 90(9): 093101, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575277

RESUMO

The vacuum and thermal environment of airless planetary surfaces, particularly those dominated by a particulate regolith such as the Moon and asteroids, produces intense near-surface thermal gradients that can substantially alter their thermal emissivity spectra when compared with spectra collected at ambient terrestrial conditions. Therefore, spectroscopic measurements acquired under conditions designed to simulate the radiation environment in which remote measurements of airless bodies are made should be used as the basis for interpreting those data. As a foundation for this goal, we report the radiometric calibration of thermal infrared emission data collected with a Fourier transform infrared spectrometer integrated with the custom Asteroid and Lunar Environment Chamber (ALEC) at Brown University. This chamber is designed to simulate the environment of airless planetary bodies by evacuating the atmospheric gasses to vacuum (<10-4 mbar), cooling the chamber with a flow of liquid nitrogen, heating the base and sides of samples with temperature-controlled sample cups, and heating the top of samples with an external light source. We present a new method for deriving sample emissivity based on the absolute radiometry properties of our system, focusing on the 400-2000 cm-1 wavenumber range. This method produces calibrated radiance spectra from calibration targets, and particulate samples and those spectra are used to derive emissivity spectra. We demonstrate that the ALEC system and data reduction methods successfully replicate independently determined spectral properties of particulate samples under both ambient and cold, vacuum conditions. The ALEC system is shown to be capable of supporting ongoing and future planetary exploration of airless surfaces by facilitating careful investigation of meteorites, lunar samples, and planetary materials at an array of environmental conditions.

3.
PLoS One ; 8(2): e56764, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457612

RESUMO

We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation.


Assuntos
Durapatita/química , Luz , Osteopontina/farmacologia , Espalhamento de Radiação , Animais , Cristalização , Cinética , Osteopontina/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA