Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 471: 115112, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871129

RESUMO

BACKGROUND: Medial temporal lobe atrophy has been linked to decline in neuropsychological measures of explicit memory function. While the hippocampus has long been identified as a critical structure in learning and memory processes, less is known about contributions of the amygdala to these functions. We sought to investigate the relationship between amygdala volume and memory functioning in a clinical sample of older adults with and without cognitive impairment. METHODS: A serial clinical sample of older adults that underwent neuropsychological assessment at an outpatient neurology clinic was selected for retrospective chart review. Patients were included in the study if they completed a comprehensive neuropsychological assessment within six months of a structural magnetic resonance imaging scan. Regional brain volumes were quantified using Neuroreader® software. Associations between bilateral hippocampal and amygdala volumes and memory scores, derived from immediate and delayed recall conditions of a verbal story learning task and a visual design reconstruction task, were examined using mixed-effects general linear models, controlling for total intracranial volume, scanner model, age, sex and education. Partial correlation coefficients, adjusted for these covariates, were calculated to estimate the strength of the association between volumes and memory scores. RESULTS: A total of 68 (39 F, 29 M) participants were included in the analyses, with a mean (SD) adjusted age of 80.1 (6.0) and educational level of 15.9 (2.5) years. Controlling for age, sex, education, and total intracranial volume, greater amygdala volumes were associated with better verbal and visual memory performance, with effect sizes comparable to hippocampal volume. No significant lateralized effects were observed. Partial correlation coefficients ranged from 0.47 to 0.33 (p<.001). CONCLUSION: These findings contribute to a growing body of knowledge identifying the amygdala as a target for further research in memory functioning. This highlights the importance of considering the broader functioning of the limbic system in which multiple subcortical structures contribute to memory processes and decline in older adults.

2.
Neuroreport ; 35(8): 529-535, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38606637

RESUMO

Physical activity (PA) is a promising therapeutic for Alzheimer's disease (AD). Only a handful of meta-analyses have studied the impact of PA interventions on regional brain volumes, and none to date has solely included studies on effect of PA on regional brain volumes in individuals with cognitive impairment (CI). In this meta-analysis, we examined whether there is support for the hypothesis that PA interventions positively impact hippocampal volume (HV) in individuals with CI. We also assessed whether the level of CI [mild CI (MCI) vs. AD] impacted this relationship. We identified six controlled trials that met inclusion criteria. These included 236 participants with AD, MCI, or preclinical AD. Data were extracted and analyzed following Cochrane guidelines. We used a random-effects model to estimate the mean change in HV pre- and post-exercise intervention. Forest plots, Hedges' g funnel plots, and Egger's test were used to assess unbiasedness and visualize intervention effects, and Tau 2 , Cochran's Q, and I 2 were calculated to assess heterogeneity. The primary analysis revealed a significant positive effect of PA on total HV. However, sub-group analyses indicated a significant preservation of HV only in individuals with MCI, but not in those with AD. Egger's test indicated no evidence of publication bias. Subgroup analyses also revealed significant heterogeneity only within the MCI cohort for the total and left HV. PA demonstrated a moderate, significant effect in preserving HV among individuals with MCI, but not AD, highlighting a therapeutic benefit, particularly in earlier disease stages.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Exercício Físico , Hipocampo , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Disfunção Cognitiva/terapia , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Exercício Físico/fisiologia , Terapia por Exercício/métodos
3.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742646

RESUMO

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Assuntos
Doença de Alzheimer , Insulinas , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amiloide , Proteínas Amiloidogênicas , Dieta com Restrição de Carboidratos , Carboidratos , Atrofia/complicações
4.
Neuroimage Clin ; 39: 103458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37421927

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and atrophy in the medial temporal lobe (MTL) and subsequent brain regions. Structural magnetic resonance imaging (sMRI) has been widely used in research and clinical care for diagnosis and monitoring AD progression. However, atrophy patterns are complex and vary by patient. To address this issue, researchers have made efforts to develop more concise metrics that can summarize AD-specific atrophy. Many of these methods can be difficult to interpret clinically, hampering adoption. In this study, we introduce a novel index which we call an "AD-NeuroScore," that uses a modified Euclidean-inspired distance function to calculate differences between regional brain volumes associated with cognitive decline. The index is adjusted for intracranial volume (ICV), age, sex, and scanner model. We validated AD-NeuroScore using 929 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, with a mean age of 72.7 years (SD = 6.3; 55.1-91.5) and cognitively normal (CN), mild cognitive impairment (MCI), or AD diagnoses. Our validation results showed that AD-NeuroScore was significantly associated with diagnosis and disease severity scores (measured by MMSE, CDR-SB, and ADAS-11) at baseline. Furthermore, baseline AD-NeuroScore was associated with both changes in diagnosis and disease severity scores at all time points with available data. The performance of AD-NeuroScore was equivalent or superior to adjusted hippocampal volume (AHV), a widely used metric in AD research. Further, AD-NeuroScore typically performed as well as or sometimes better when compared to other existing sMRI-based metrics. In conclusion, we have introduced a new metric, AD-NeuroScore, which shows promising results in detecting AD, benchmarking disease severity, and predicting disease progression. AD-NeuroScore differentiates itself from other metrics by being clinically practical and interpretable.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Idoso , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/patologia , Lobo Temporal/patologia , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Atrofia/diagnóstico por imagem , Atrofia/patologia , Progressão da Doença
5.
J Alzheimers Dis ; 91(3): 999-1006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530088

RESUMO

BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS: We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Atividades Cotidianas , Força da Mão , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Hipocampo
6.
J Alzheimers Dis ; 90(4): 1761-1769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36373320

RESUMO

BACKGROUND: Distinguishing between subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia in a scalable, accessible way is important to promote earlier detection and intervention. OBJECTIVE: We investigated diagnostic categorization using an FDA-cleared quantitative electroencephalographic/event-related potential (qEEG/ERP)-based cognitive testing system (eVox® by Evoke Neuroscience) combined with an automated volumetric magnetic resonance imaging (vMRI) tool (Neuroreader® by Brainreader). METHODS: Patients who self-presented with memory complaints were assigned to a diagnostic category by dementia specialists based on clinical history, neurologic exam, neuropsychological testing, and laboratory results. In addition, qEEG/ERP (n = 161) and quantitative vMRI (n = 111) data were obtained. A multinomial logistic regression model was used to determine significant predictors of cognitive diagnostic category (SCD, MCI, or dementia) using all available qEEG/ERP features and MRI volumes as the independent variables and controlling for demographic variables. Area under the Receiver Operating Characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the prediction models. RESULTS: The qEEG/ERP measures of Reaction Time, Commission Errors, and P300b Amplitude were significant predictors (AUC = 0.79) of cognitive category. Diagnostic accuracy increased when volumetric MRI measures, specifically left temporal lobe volume, were added to the model (AUC = 0.87). CONCLUSION: This study demonstrates the potential of a primarily physiological diagnostic model for differentiating SCD, MCI, and dementia using qEEG/ERP-based cognitive testing, especially when combined with volumetric brain MRI. The accessibility of qEEG/ERP and vMRI means that these tools can be used as adjuncts to clinical assessments to help increase the diagnostic certainty of SCD, MCI, and dementia.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Potenciais Evocados , Demência/diagnóstico por imagem , Demência/psicologia
7.
J Clin Psychol ; 70(4): 313-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23852856

RESUMO

OBJECTIVE: The current study explores relationships between mindfulness, emotional regulation, impulsivity, and stress proneness in a sample of participants recruited in a Diagnostic and Statistical Manual of Mental Disorder Fifth Edition Field Trial for Hypersexual Disorder and healthy controls to assess whether mindfulness attenuates symptoms of hypersexuality. METHOD: Hierarchal regression analysis was used to assess whether significant relationships between mindfulness and hypersexuality exist beyond associations commonly found with emotional dysregulation, impulsivity, and stress proneness in a sample of male hypersexual patients (n = 40) and control subjects (n = 30). RESULTS: Our results show a robust inverse relationship of mindfulness to hypersexuality over and above associations with emotional regulation, impulsivity, and stress proneness. CONCLUSIONS: These results suggest that mindfulness may be a meaningful component of successful therapy among patients seeking help for hypersexual behavior in attenuating hypersexuality, improving affect regulation, stress coping, and increasing tolerance for desires to act on maladaptive sexual urges and impulses.


Assuntos
Atenção Plena , Disfunções Sexuais Psicogênicas/psicologia , Adolescente , Adulto , Idoso , Ansiedade/fisiopatologia , Depressão/fisiopatologia , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Personalidade/fisiologia , Disfunções Sexuais Psicogênicas/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto Jovem
8.
PLoS One ; 7(3): e33850, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479458

RESUMO

Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders.


Assuntos
Caracteres Sexuais , Maturidade Sexual/fisiologia , Lobo Temporal/fisiologia , Testosterona/sangue , Adolescente , Fatores Etários , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Puberdade/fisiologia , Fatores Sexuais
9.
Cereb Cortex ; 21(3): 636-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20713504

RESUMO

Sex differences in age- and puberty-related maturation of human brain structure have been observed in typically developing age-matched boys and girls. Because girls mature 1-2 years earlier than boys, the present study aimed at assessing sex differences in brain structure by studying 80 adolescent boys and girls matched on sexual maturity, rather than age. We evaluated pubertal influences on medial temporal lobe (MTL), thalamic, caudate, and cortical gray matter volumes utilizing structural magnetic resonance imaging and 2 measures of pubertal status: physical sexual maturity and circulating testosterone. As predicted, significant interactions between sex and the effect of puberty were observed in regions with high sex steroid hormone receptor densities; sex differences in the right hippocampus, bilateral amygdala, and cortical gray matter were greater in more sexually mature adolescents. Within sex, we found larger volumes in MTL structures in more sexually mature boys, whereas smaller volumes were observed in more sexually mature girls. Our results demonstrate puberty-related maturation of the hippocampus, amygdala, and cortical gray matter that is not confounded by age, and is different for girls and boys, which may contribute to differences in social and cognitive development during adolescence, and lasting sexual dimorphisms in the adult brain.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Puberdade/fisiologia , Caracteres Sexuais , Adolescente , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
10.
Neuroimage ; 54(4): 3067-75, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21040792

RESUMO

Structural and metabolic abnormalities in fronto-striatal structures have been reported in children with prenatal methamphetamine (MA) exposure. The current study was designed to quantify functional alterations to the fronto-striatal circuit in children with prenatal MA exposure using functional magnetic resonance imaging (fMRI). Because many women who use MA during pregnancy also use alcohol, a known teratogen, we examined 50 children (age range 7-15), 19 with prenatal MA exposure, 15 of whom had concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but no MA exposure (ALC group), and 18 unexposed controls (CON group). We hypothesized that MA exposed children would demonstrate abnormal brain activation during a visuospatial working memory (WM) "N-Back" task. As predicted, the MAA group showed less activation than the CON group in many brain areas, including the striatum and frontal lobe in the left hemisphere. The ALC group showed less activation than the MAA group in several regions, including the right striatum. We found an inverse correlation between performance and activity in the striatum in both the CON and MAA groups. However, this relationship was significant in the caudate of the CON group but not the MAA group, and in the putamen of the MAA group but not the CON group. These findings suggest that structural damage in the fronto-striatal circuit after prenatal MA exposure leads to decreased recruitment of this circuit during a WM challenge, and raise the possibility that a rewiring of cortico-striatal networks may occur in children with prenatal MA exposure.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Encéfalo/fisiopatologia , Memória/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Adolescente , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Criança , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Metanfetamina/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...