Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 41(20): 2798-2810, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411033

RESUMO

Prostate cancer (PCa) metastases are highly enriched with genomic alterations including a gain at the 16p13.3 locus, recently shown to be associated with disease progression and poor clinical outcome. ECI1, residing at the 16p13.3 gain region, encodes Δ3, Δ2-Enoyl-CoA Delta Isomerase 1 (ECI1), a key mitochondrial fatty acid ß-oxidation enzyme. Although deregulated mitochondrial fatty acid ß-oxidation is known to drive PCa pathogenesis, the role of ECI1 in PCa is still unknown. We investigated the impacts of ECI1 on PCa phenotype in vitro and in vivo by modulating its expression in cell lines and assessed the clinical implications of its expression in human prostate tissue samples. In vitro, ECI1 overexpression increased PCa cell growth while ECI1 deficiency reduced its growth. ECI1 also enhanced colony formation, cell motility, and maximal mitochondrial respiratory capacity. In vivo, PCa cells stably overexpressing ECI1 injected orthotopically in nude mice formed larger prostate tumors with higher number of metastases. Immunohistochemistry analysis of the human tissue microarray representing 332 radical prostatectomy cases revealed a stronger ECI1 staining in prostate tumors compared to corresponding benign tissues. ECI1 expression varied amongst tumors and was higher in cases with 16p13.3 gain, high Gleason grade, and advanced tumor stage. ECI1 overexpression was a strong independent predictor of biochemical recurrence after adjusting for known clinicopathologic parameters (hazard ratio: 3.65, P < 0.001) or the established CAPRA-S score (hazard ratio: 3.95, P < 0.001). ECI1 overexpression was also associated with significant increased risk of distant metastasis and reduced overall survival. Overall, this study demonstrates the functional capacity of ECI1 in PCa progression and highlights the clinical implication of ECI1 as a potential target for the management of PCa.


Assuntos
Dodecenoil-CoA Isomerase , Neoplasias da Próstata , Animais , Dodecenoil-CoA Isomerase/genética , Ácidos Graxos , Humanos , Masculino , Camundongos , Camundongos Nus , Fenótipo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
2.
J Mol Diagn ; 22(10): 1246-1263, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763409

RESUMO

DNA copy number alterations (CNAs) are promising biomarkers to predict prostate cancer (PCa) outcome. However, fluorescence in situ hybridization (FISH) cannot assess complex CNA signatures because of low multiplexing capabilities. Multiplex ligation-dependent probe amplification (MLPA) can detect multiple CNAs in a single PCR assay, but PCa-specific probe mixes available commercially are lacking. Synthetic MLPA probes were designed to target 10 CNAs relevant to PCa: 5q15-21.1 (CHD1), 6q15 (MAP3K7), 8p21.2 (NKX3-1), 8q24.21 (MYC), 10q23.31 (PTEN), 12p13.1 (CDKN1B), 13q14.2 (RB1), 16p13.3 (PDPK1), 16q23.1 (GABARAPL2), and 17p13.1 (TP53), with 9 control probes. In cell lines, CNAs were detected when the cancer genome was as low as 30%. Compared with FISH in radical prostatectomy formalin-fixed, paraffin-embedded samples (n = 18: 15 cancers and 3 matched benign), the MLPA assay showed median sensitivity and specificity of 80% and 93%, respectively, across all CNAs assessed. In the validation set (n = 40: 20 tumors sampled in two areas), the respective sensitivity and specificity of MLPA compared advantageously with FISH and TaqMan droplet digital PCR (ddPCR) when assessing PTEN deletion (FISH: 85% and 100%; ddPCR: 100% and 83%) and PDPK1 gain (FISH: 100% and 92%; ddPCR: 93% and 100%). This new PCa probe mix accurately identifies CNAs by MLPA across multiple genes using low quality and quantities (50 ng) of DNA extracted from clinical formalin-fixed, paraffin-embedded samples.


Assuntos
Variações do Número de Cópias de DNA/genética , Sondas de DNA/metabolismo , Formaldeído/química , Técnicas de Amplificação de Ácido Nucleico , Inclusão em Parafina , Neoplasias da Próstata/genética , Fixação de Tecidos , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Genoma Humano , Humanos , Limite de Detecção , Masculino , Reprodutibilidade dos Testes
3.
Mod Pathol ; 32(1): 128-138, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30140035

RESUMO

Prostate cancer is a clinically heterogeneous disease and accurately risk-stratifying patients is a key clinical challenge. We hypothesized that the concurrent identification of the DNA copy number alterations 10q23.3 (PTEN) deletion and 16p13.3 (PDPK1) gain, related to the PI3K/AKT survival pathway, would improve prognostication. We assessed PTEN deletion status using fluorescence in situ hybridization (FISH) and evaluated its clinical significance in combination with the 16p13.3 gain in a set of 332 primary radical prostatectomy cases on a tissue microarray with clinical follow-up. The PTEN deletion was detected in 34% (97/287) of the evaluable tumors and was significantly associated with high Gleason grade group (P < 0.0001) and advanced pathological tumor stage (pT-stage, P < 0.001). The PTEN deletion emerged as a significant predictor of biochemical recurrence independent of the standard clinicopathologic parameters (hazard ratio: 3.00, 95% confidence interval: 1.81-4.98; P < 0.0001) and further stratified patients with low and intermediate risk of biochemical recurrence [Gleason grade group 1-2 (≤3 + 4), Gleason grade group 2 (3 + 4), pT2, prostate-specific antigen ≤ 10, low and intermediate CAPRA-S score; log-rank P ≤ 0.007]. A PTEN deletion also increased the risk of distant metastasis (log-rank, P = 0.001), further supporting its role in prostate cancer progression. Combining both 16p13.3 gain and PTEN deletion improved biochemical recurrence risk stratification and provided prognostic information beyond the established CAPRA-S score (co-alteration: hazard ratio: 4.70, 95% confidence interval: 2.12-10.42; P < 0.0001). Our study demonstrates the potential clinical utility of PTEN genomic deletion in low-intermediate risk patients and highlights the enhanced prognostication achieved when assessed in combination with another genomic biomarker related to the PI3K/AKT pathway, thereby supporting their promising usefulness in clinical management of prostate cancer.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Biomarcadores Tumorais/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Adulto , Idoso , Variações do Número de Cópias de DNA , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia , Neoplasias da Próstata/mortalidade
4.
Mol Cancer Res ; 16(1): 115-123, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993510

RESUMO

Identifying tumors with high metastatic potential is key to improving the clinical management of prostate cancer. Recently, we characterized a chromosome 16p13.3 gain frequently observed in prostate cancer metastases and now demonstrate the prognostic value of this genomic alteration in surgically treated prostate cancer. Dual-color FISH was used to detect 16p13.3 gain on a human tissue microarray representing 304 primary radical prostatectomy (RP) cases with clinical follow-up data. The results were validated in an external dataset. The 16p13.3 gain was detected in 42% (113/267) of the specimens scorable by FISH and was significantly associated with clinicopathologic features of aggressive prostate cancer, including high preoperative PSA (P = 0.03) levels, high Gleason score (GS, P < 0.0001), advanced pathologic tumor stage (P < 0.0001), and positive surgical margins (P = 0.009). The 16p13.3 gain predicted biochemical recurrence (BCR) in the overall cohort (log-rank P = 0.0005), and in subsets of patients with PSA ≤10 or GS ≤7 (log-rank P = 0.02 and P = 0.006, respectively). Moreover, combining the 16p13.3 gain status with standard prognostic markers improved BCR risk stratification and identified a subgroup of patients with high probability of recurrence. The 16p13.3 gain status was also associated with an increased risk of developing distant metastases (log-rank P = 0.03) further substantiating its role in prostate cancer progression.Implications: This study demonstrates the prognostic significance of the 16p13.3 genomic gain in primary prostate tumors, suggesting potential utility in the clinical management of the disease by identifying patients at high risk of recurrence who may benefit from adjuvant therapies. Mol Cancer Res; 16(1); 115-23. ©2017 AACR.


Assuntos
Cromossomos Humanos Par 16 , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Adulto , Idoso , Progressão da Doença , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prostatectomia/métodos , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...