Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15485, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726379

RESUMO

Detection and differentiation of brown fat in humans poses several challenges, as this tissue is sparse and often mixed with white adipose tissue. Non-invasive detection of beige fat represents an even greater challenge as this tissue is structurally and functionally more like white fat than brown fat. Here we used positron emission tomography with 18F-fluorodeoxyglucose, computed tomography, xenon-enhanced computed tomography, and dynamic contrast-enhanced ultrasound, to non-invasively detect functional and structural changes associated with the browning process of inguinal white fat, induced in mice by chronic stimulation with the ß3-adrenergic receptor agonist CL-316243. These studies reveal a very heterogeneous increase in baseline tissue radiodensity and xenon-enhanced radiodensity, indicative of both an increase in adipocytes water and protein content as well as tissue perfusion, mostly in regions that showed enhanced norepinephrine-stimulated perfusion before CL-316243 treatment. No statistically significant increase in 18F-fluorodeoxyglucose uptake or norepinephrine-stimulated tissue perfusion were observed in the mice after the CL-316243 treatment. The increase in tissue-water content and perfusion, along with the negligible increase in the tissue glucose uptake and norepinephrine-stimulated perfusion deserve more attention, especially considering the potential metabolic role that this tissue may play in whole body metabolism.


Assuntos
Adipócitos , Fluordesoxiglucose F18 , Humanos , Animais , Camundongos , Perfusão , Tecido Adiposo Branco/diagnóstico por imagem , Norepinefrina
2.
Magn Reson Med ; 90(1): 21-33, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36797796

RESUMO

PURPOSE: To compare the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on the T1 of 129 Xe and 1 H and to measure the relaxation of 129 Xe in blood at low and high magnetic field strengths. METHODS: 129 Xe and 1 H T1 relaxometry was performed at low- and high-field strengths in samples containing different SPION concentrations, while imaging was used to compare the contrast obtainable in these two field regimes. In vivo experiments at variable field strengths were performed to determine the depolarization of 129 Xe in blood and the feasibility of in vivo dissolved-phase spectroscopy and imaging at low field. RESULTS: The SPION relaxivity was substantially greater at low field for 1 H, increasing from 0.92 ± 0.06 mM s-1 at 11.7T to 31.5 ± 1.8 mM s-1 at 0.6 mT, and for 129 Xe, which increased from 0.13 ± 0.03 mM s-1 at 11.7T to 7.32 ± 0.71 mM s-1 at 2.1 mT. The additional MR signal loss increased from 0.7% at 9.4T to 20.6 ± 4.2% at 0.6 mT for 1 H and from -0.7 ± 3.4% at 9.4T to 12.7 ± 3.5% at 2.1 mT for 129 Xe. Blood was found to depolarize 129 Xe below 3T in a manner inversely proportional to the field strength. In vitro studies at 2.1 mT suggest 129 Xe relaxation times below 5 s in blood dilutions as low as 0.4% volume. CONCLUSION: SPIONs longitudinal relaxivity increases at low field both for 1 H and 129 Xe. The depolarization of xenon in blood, which is found to increase below 3T, effectively prevents in vivo dissolved-phase spectroscopy and imaging at low-field strengths.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Xenônio , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio
3.
Sci Rep ; 12(1): 21383, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496470

RESUMO

Brown adipose tissue (BAT) is a fat tissue specialized in heat production (non-shivering thermogenesis) and used by mammals to defend core body temperature when exposed to cold. Several studies have shown that during non-shivering thermogenesis the increase in BAT oxygen demand is met by a local and specific increase in tissue's blood flow. While the vasculature of BAT has been extensively studied postmortem in rodents using histology, optical and CT imaging techniques, vasculature changes during stimulation of non-shivering thermogenesis have never been directly detected in vivo. Here, by using computed tomography (CT) angiography with gold nanoparticles we investigate, non-invasively, changes in BAT vasculature during adrenergic stimulation of non-shivering thermogenesis by norepinephrine, a vasoconstrictor known to mediate brown fat heat production, and by CL 316,243, a specific ß3-adrenergic agonist also known to elicit BAT thermogenesis in rodents. We found that while CL 316,243 causes local vasodilation in BAT, with little impact on the rest of the vasculature throughout the body, norepinephrine leads to local vasodilation in addition to peripheral vasoconstriction. As a result, a significantly greater relative increase in BAT perfusion is observed following the injection of NE compared to CL. This study demonstrates the use of in vivo CT angiography as an effective tool in assessing vascular reactivity in BAT both qualitatively and quantitatively in preclinical studies.


Assuntos
Tecido Adiposo Marrom , Nanopartículas Metálicas , Animais , Camundongos , Tecido Adiposo Marrom/fisiologia , Adrenérgicos , Ouro , Termogênese/fisiologia , Temperatura Baixa , Norepinefrina/farmacologia , Mamíferos
4.
Chemphyschem ; 23(24): e202200438, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36037034

RESUMO

Detection of bare gas microbubbles by magnetic resonance (MR) at low concentrations typically used in clinical contrast-ultrasound studies was recently demonstrated using hyperCEST. Despite the enhanced sensitivity achieved with hyperCEST, in vivo translation is challenging as on-resonance saturation of the gas-phase core of microbubbles consequently results in saturation of the gas-phase hyperpolarized 129 Xe within the lungs. Alternatively, microbubbles can be condensed into the liquid phase to form perfluorocarbon nanodroplets, where 129 Xe resonates at a chemical shift that is separated from the gas-phase signal in the lungs. For ultrasound applications, nanodroplets can be acoustically reverted back into their microbubble form to act as a phase-change contrast agent. Here, we show that low-boiling point perfluorocarbons, both in their liquid and gas form, generate phase-dependent hyperCEST contrast. Magnetic resonance detection of ultrasound-mediated phase transition demonstrates that these perfluorocarbons could be used as a dual-phase dual-modality MR/US contrast agent.


Assuntos
Fluorocarbonos , Meios de Contraste , Microbolhas , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
5.
Obesity (Silver Spring) ; 30(9): 1831-1841, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35912825

RESUMO

OBJECTIVE: This study aimed to validate xenon-enhanced computed tomography (XECT) for the detection of brown adipose tissue (BAT) and to use XECT to assess differences in BAT distribution and perfusion between lean, obese, and diabetic nonhuman primates (NHPs). METHODS: Whole-body XECT imaging was performed in anesthetized rhesus and vervet monkeys during adrenergic stimulation of BAT thermogenesis. In XECT images, BAT was identified as fat tissue that, during xenon inhalation, underwent significant radiodensity enhancement compared with subcutaneous fat. To measure BAT blood flow, BAT radiodensity enhancement was measured over time on the six computed tomography scans acquired during xenon inhalation. Postmortem immunohistochemical staining was used to confirm imaging findings. RESULTS: XECT was able to correctly identify all BAT depots that were confirmed at necropsy, enabling construction of the first comprehensive anatomical map of BAT in NHPs. A significant decrease in BAT perfusion was found in diabetic animals compared with obese animals and healthy animals, as well as absence of axillary BAT and significant reduction of supraclavicular BAT in diabetic animals compared with obese and lean animals. CONCLUSIONS: The use of XECT in NHP models of obesity and diabetes allows the analysis of the impact of metabolic status on BAT mass and perfusion.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus , Tecido Adiposo Marrom/metabolismo , Animais , Chlorocebus aethiops , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Perfusão , Primatas , Tomografia Computadorizada por Raios X/métodos , Xenônio/metabolismo
6.
Magn Reson Med ; 88(5): 2005-2013, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35726363

RESUMO

PURPOSE: To measure dissolved-phase 129 Xe T1 values at high and low magnetic fields and the field dependence of 129 Xe depolarization by hollow fiber membranes used to infuse hyperpolarized xenon in solution. METHODS: Dissolved-phase T1 measurements were made at 11.7T and 2.1 mT by bubbling xenon in solution and by using a variable delay to allow spins to partially relax back to thermal equilibrium before probing their magnetization. At high field, relaxation values were compared to those obtained by using the small flip angle method. For depolarization studies, we probed the magnetization of the polarized gas diffusing through an exchange membrane module placed at different field strengths. RESULTS: Total loss of polarization was observed for xenon diffusing through hollow fiber membranes at low field, while significant polarization loss (>20%) was observed at magnetic fields up to 2T. Dissolved-phase 129 Xe T1 values were found consistently shorter at 2.1 mT compared to 11.7T. In addition, both O2 and Xe gas concentrations in solution were found to significantly affect dissolved-phase 129 Xe T1 values. CONCLUSION: Dissolved-phase 129 Xe measurements are feasible at low field, but to assess the feasibility of in vivo dissolved-phase imaging and spectroscopy the T1 of xenon in blood will need to be measured. Both O2 and Xe concentrations in solution are found to greatly affect  dissolved-phase 129 Xe T1 values and may explain, along with RF miscalibration, the large discrepancy in previously reported results.


Assuntos
Isótopos de Xenônio , Xenônio , Difusão , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Xenônio/química
7.
Magn Reson Med ; 87(3): 1480-1489, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601738

RESUMO

PURPOSE: HyperCEST contrast relies on the reduction of the solvent signal after selective saturation of the solute magnetization. The scope of this work is to outline the experimental conditions needed to obtain a reliable hyperCEST contrast in vivo, where the "solvent" signal (ie, the dissolved-phase signal) may change over time due to the increase in xenon (Xe) accumulation into tissue. METHODS: Hyperpolarized 129 Xe was delivered to mice at a constant volume and rate using a mechanical ventilator, which triggered the saturation, excitation, and acquisition of the MR signal during the exhale phase of the breath cycle-either every breath or every 2, 3, or 4 breaths. Serial Z-spectra and hyperCEST images were acquired before and after a bolus injection of cucurbit[6]uril to assess possible signal fluctuations and instabilities. RESULTS: The intensity of the dissolved-phase Xe signal was observed to first increase immediately after the beginning of the hyperpolarized gas inhalation and NMR acquisition, and then decrease before reaching a steady-state condition. Once a steady-state dissolved-phase magnetization was established, a reliable hyperCEST contrast, exceeding 40% signal reduction, was observed. CONCLUSION: A reliable hyperCEST contrast can only be obtained after establishing a steady-state dissolved phase 129 Xe magnetization. Under stable physiological conditions, a steady-state dissolved-phase Xe magnetization is only achieved after a series of Xe inhalations and RF excitations, and it requires synchronization of the breathing rate with the MR acquisition.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Xenônio , Animais , Espectroscopia de Ressonância Magnética , Camundongos , Xenônio
8.
J Magn Reson ; 332: 107076, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624719

RESUMO

In recent years, low field and ultra-low field NMR spectrometers have gained interest due to their portability, lower cost, and reduced subject-induced magnetic field inhomogeneities. Here, we describe the design of a low-cost multinuclear NMR spectrometer operating in the ultra-low field regime (ULF), which possesses high spectral resolution and enables arbitrary pulse programming. An inexpensive multifunction input/output (I/O) device is used to handle waveform generation and digitization in the kHz operating range. A home-built radio frequency (RF) mixing circuit is used to down-mix the NMR signals, allowing for the slower sampling rates and lower memory requirements needed to enable minute-long acquisitions using a standard Windows PC. The LabVIEW code, along with a bill of materials for all components used in the spectrometer, is included. As proof of concept, 1H relaxation measurements and the simultaneous detection of 1H with gas phase and dissolved 129Xe frequencies using the described low field NMR spectrometer are demonstrated.

9.
Chemphyschem ; 22(12): 1219-1228, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33852753

RESUMO

Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.


Assuntos
Meios de Contraste/química , Fluorocarbonos/química , Microbolhas , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Xenônio/química
10.
EJNMMI Res ; 10(1): 136, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33159596

RESUMO

BACKGROUND: Brown adipose tissue (BAT) is a fat tissue found in most mammals that helps regulate energy balance and core body temperature through a sympathetic process known as non-shivering thermogenesis. BAT activity is commonly detected and quantified in [18F]FDG positron emission tomography/computed tomography (PET/CT) scans, and radiotracer uptake in BAT during adrenergic stimulation is often used as a surrogate measure for identifying thermogenic activity in the tissue. BAT thermogenesis is believed to be contingent upon the expression of the protein UCP1, but conflicting results have been reported in the literature concerning [18F]FDG uptake within BAT of mice with and without UCP1. Differences in animal handling techniques such as feeding status, type of anesthetic, type of BAT stimulation, and estrogen levels were identified as possible confounding variables for [18F]FDG uptake. In this study, we aimed to assess differences in BAT [18F]FDG uptake between wild-type and UCP1-knockout mice using a protocol that minimizes possible variations in BAT stimulation caused by different stress responses to mouse handling. RESULTS: [18F]FDG PET/CT scans were run on mice that were anesthetized with pentobarbital after stimulation of non-shivering thermogenesis by norepinephrine. While in wild-type mice [18F]FDG uptake in BAT increased significantly with norepinephrine stimulation of BAT, there was no consistent change in [18F]FDG uptake in BAT of mice lacking UCP1. CONCLUSIONS: [18F]FDG uptake within adrenergically stimulated BAT of wild-type and UCP1-knockout mice can significantly vary such that an [18F]FDG uptake threshold cannot be used to differentiate wild-type from UCP1-knockout mice. However, while an increase in BAT [18F]FDG uptake during adrenergic stimulation is consistently observed in wild-type mice, in UCP1-knockout mice [18F]FDG uptake in BAT seems to be independent of ß3-adrenergic stimulation of non-shivering thermogenesis.

11.
Mol Imaging Biol ; 22(3): 675-684, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31520279

RESUMO

PURPOSE: Brown adipose tissue (BAT) has emerged as a promising target to counteract obesity and its associated metabolic disorders. However, the detection of this tissue remains one of the major roadblocks. PROCEDURES: In this study, we assess the use of BODIPY 1 as a positron emission tomography (PET) imaging agent to image BAT depots in vivo in two mouse phenotypes: obesity-resistant BALB/c mice and the obesity-prone C57BL/6 mice. [18F]BODIPY 1 is a radioactive dye that processed both radioactivity for PET imaging and fluorescence signal for in vitro mechanism study. RESULTS: Through the co-staining of cancer cells with BODIPY 1 and MitoTracker, we found BODIPY 1 mainly accumulated in cell mitochondria in vitro. Fluorescence imaging of primary brown and white adipocytes further confirmed BODIPY 1 had significantly higher accumulation in primary brown adipocytes compared with primary white adipocytes. We evaluated [18F]BODIPY 1 for BAT imaging in both obesity-resistant BALB/c mice and obesity-prone C57BL/6 mice. Indeed, [18F]BODIPY 1 was efficiently taken up by BAT in both mouse genotypes (6.40 ± 1.98 %ID/g in obesity-resistant BALB/c mice (n = 8) and 5.37 ± 0.82 %ID/g in obesity-prone C57BL/6 mice (n = 7)). Although norepinephrine stimulation could increase the absolute BAT uptake, the enhancement is not significant in both genotypes (p > 0.05) at current sample size. These results suggest BAT uptake of [18F]BODIPY 1 may be independent of BAT thermogenic activity. As a comparison, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging was performed in obesity-resistant BALB/c mice. Significantly increased uptake was observed in adrenergically activated BAT (10.08 ± 2.52 %ID/g, n = 3) but not in inactive BAT (3.803 ± 0.70 %ID/g; n = 3). Because [18F]BODIPY 1 maintained its fluorescent property, BAT tissue was excised and studied using fluorescence microscopy. Strong fluorescence signal was observed in BAT mouse that was injected with BODIPY 1. CONCLUSIONS: Unlike [18F]FDG, [18F]BODIPY 1 showed prominent accumulation in BAT under both inactive and stimulated status. [18F]BODIPY 1 may serve as a valuable BAT PET agent to possibly assess BAT mitochondria density, thus BAT thermogenic capacity after further evaluation.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Compostos de Boro , Fluordesoxiglucose F18 , Mitocôndrias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tecido Adiposo Marrom/metabolismo , Animais , Compostos de Boro/química , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Radioisótopos de Flúor/química , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética
12.
Sci Rep ; 9(1): 14865, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619741

RESUMO

Brown adipose tissue (BAT) is a type of fat specialized in non-shivering thermogenesis. While non-shivering thermogenesis is mediated primarily by uncoupling protein 1 (UCP1), the development of the UCP1 knockout mouse has enabled the study of possible UCP1-independent non-shivering thermogenic mechanisms, whose existence has been shown so far only indirectly in white adipose tissue and still continues to be a matter of debate in BAT. In this study, by using magnetic resonance thermometry with hyperpolarized xenon, we produce the first direct evidence of UCP1-independent BAT thermogenesis in knockout mice. We found that, following adrenergic stimulation, the BAT temperature of knockout mice increases more and faster than rectal temperature. While with this study we cannot exclude or separate the physiological effect of norepinephrine on core body temperature, the fast increase of iBAT temperature seems to suggest the existence of a possible UCP1-independent thermogenic mechanism responsible for this temperature increase.


Assuntos
Tecido Adiposo Marrom/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Termogênese/genética , Termometria/métodos , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Norepinefrina/farmacologia , Termogênese/efeitos dos fármacos , Termometria/instrumentação , Proteína Desacopladora 1/deficiência , Xenônio
13.
Magn Reson Med ; 81(2): 765-772, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30216528

RESUMO

PURPOSE: Absolute MR temperature measurements are currently difficult because they require precalibration procedures specific for tissue types and conditions. Reference of the lipid-dissolved 129 Xe resonance frequency to temperature-insensitive methylene protons (rLDX) has been proposed to remove the effect of macro- and microscopic susceptibility gradients to obtain absolute temperature information. The scope of this work is to evaluate the rLDX chemical shift (CS) dependence on lipid composition to estimate the precision of absolute temperature measurements in lipids. METHODS: Neat triglycerides, vegetable oils, and samples of freshly excised human and rodent adipose tissue (AT) are prepared under 129 Xe atmosphere and studied using high-resolution NMR. The rLDX CS is measured as a function of temperature. 1 H spectra are also acquired and the consistency of methylene-referenced water proton and rLDX CS values are compared in human AT. RESULTS: Although rLDX CS shows a dependence on lipid composition, in human and rodent AT samples the rLDX shows consistent CS values with a similar temperature dependence (-0.2058 ± 0.0010) ppm/°C × T (°C) + (200.15 ± 0.03) ppm, enabling absolute temperature measurements with an accuracy of 0.3°C. Methylene-referenced water CS values present variations of up to 4°C, even under well-controlled conditions. CONCLUSIONS: The rLDX can be used to obtain accurate absolute temperature measurements in AT, opening new opportunities for hyperpolarized 129 Xe MR to measure tissue absolute temperature.


Assuntos
Lipídeos/química , Imageamento por Ressonância Magnética , Xenônio , Tecido Adiposo/metabolismo , Animais , Calibragem , Humanos , Óleos de Plantas/química , Prótons , Ratos , Valores de Referência , Reprodutibilidade dos Testes , Temperatura , Triglicerídeos/química , Água/química
14.
Proc Natl Acad Sci U S A ; 115(1): 174-179, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255046

RESUMO

Detection and quantification of brown adipose tissue (BAT) mass remains a major challenge, as current tomographic imaging techniques are either nonspecific or lack the necessary resolution to quantify BAT mass, especially in obese phenotypes, in which this tissue may be present but inactive. Here, we report quantification of BAT mass by xenon-enhanced computed tomography. We show that, during stimulation of BAT thermogenesis, the lipophilic gas xenon preferentially accumulates in BAT, leading to a radiodensity enhancement comparable to that seen in the lungs. This enhancement is mediated by a selective reduction in BAT vascular resistance, which greatly increases vascular perfusion of BAT. This enhancement enables precise identification and quantification of BAT mass not only in lean, but also in obese, mouse phenotypes, in which this tissue is invisible to conventional tomographic imaging techniques. The method is developed and validated in rodents and then applied in macaques to assess its feasibility in larger species.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Xenônio , Animais , Macaca , Camundongos Obesos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação
15.
Magn Reson Med ; 80(2): 431-441, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29266425

RESUMO

PURPOSE: To assess the effect of macroscopic susceptibility gradients on the gas-phase referenced dissolved-phase 129 Xe (DPXe) chemical shift (CS) and to establish the robustness of a water-based referencing system for in vivo DPXe spectra. METHODS: Frequency shifts induced by spatially varying magnetic susceptibility are calculated by finite-element analysis for the human head and chest. Their effect on traditional gas-phase referenced DPXe CS is then assessed theoretically and experimentally. A water-based referencing system for the DPXe resonances that uses the local water protons as reference is proposed and demonstrated in vivo in rats. RESULTS: Across the human brain, macroscopic susceptibility gradients can induce an apparent variation in the DPXe CS of up to 2.5 ppm. An additional frequency shift as large as 6.5 ppm can exist between DPXe and gas-phase resonances. By using nearby water protons as reference for the DPXe CS, the effect of macroscopic susceptibility gradients is eliminated and consistent CS values are obtained in vivo, regardless of shimming conditions, region of interest analyzed, animal orientation, or lung inflation. Combining in vitro and in vivo spectroscopic measurements finally enables confident assignment of some of the DPXe peaks observed in vivo. CONCLUSION: To use hyperpolarized xenon as a biological probe in tissues, the DPXe CS in specific organs/tissues must be reliably measured. When the gas-phase is used as reference, variable CS values are obtained for DPXe resonances. Reliable peak assignments in DPXe spectra can be obtained by using local water protons as reference. Magn Reson Med 80:431-441, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Isótopos de Xenônio/química , Animais , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Ratos , Ratos Endogâmicos F344 , Processamento de Sinais Assistido por Computador , Tórax/diagnóstico por imagem
16.
J Nat Sci ; 3(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28580427

RESUMO

Brown adipose tissue (BAT) in adults has been shown to have a meaningful impact on energy expenditure and cold-induced thermogenesis. Data from rodent research have suggested that exercise may be a promising method of increasing BAT activity, with potential applications to the treatment and prevention of obesity and diabetes. However, emerging human research using positron emission tomography (PET) with [18F] Fluorodeoxyglucose (FDG) has identified lower BAT activity in endurance-trained athletes compared to sedentary controls, despite similar metabolic rate responses to cold exposure. Here we report a similar incidental finding in a pilot study that included a sample of 2 endurance athletes and 10 untrained individuals. This incidental finding motivated a retrospective analysis of the data aimed at assessing the potential confounding influence of muscle FDG uptake on BAT estimation. Results indicated that athletes skewed the relationship between body mass index (BMI) and supraclavicular fat (sFAT) FDG uptake, while a non-significant inverse relationship between muscle FDG uptake and sFAT FDG uptake was also observed. The current retrospective analysis provides preliminary evidence suggesting that BAT estimation may be biased in endurance-trained individuals, which may relate to skeletal muscle FDG uptake. These results point to important methodological considerations for estimating BAT activity via FDG uptake, for which we propose potential solutions that facilitate unbiased estimation of BAT activity in groups that differ in terms of lean body mass and physical activity level.

17.
J Magn Reson ; 279: 60-67, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28475947

RESUMO

Continuous-flow spin-exchange optical pumping (SEOP) continues to serve as the most widespread method of polarizing 129Xe for magnetic resonance experiments. Unfortunately, continuous-flow SEOP still suffers from as-yet unidentified inefficiencies that prevent the production of large volumes of xenon with a nuclear spin polarization close to theoretically calculated values. In this work we use a combination of ultra-low field nuclear magnetic resonance spectroscopy and atomic absorption spectroscopy (AAS) measurements to study the effects of dark Rb vapor on hyperpolarized 129Xe in situ during continuous-flow SEOP. We find that dark Rb vapor in the optical cell outlet has negligible impact on the final 129Xe polarization at typical experimental conditions, but can become significant at higher oven temperatures and lower flow rates. Additionally, in the AAS spectra we also look for a signature of paramagnetic Rb clusters, previously identified as a source of xenon depolarization and a cause for SEOP inefficiency, for which we are able to set an upper limit of 8.3×1015 Rb dimers per cm3.

18.
Chemistry ; 23(4): 725-751, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27711999

RESUMO

Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.

19.
PLoS One ; 8(9): e74206, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040203

RESUMO

The recent discovery of active Brown Adipose Tissue (BAT) in adult humans has opened new avenues for obesity research and treatment, as reduced BAT activity seem to be implicated in human energy imbalance, diabetes, and hypertension. However, clinical applications are currently limited by the lack of non-invasive tools for measuring mass and function of this tissue in humans. Here we present a new magnetic resonance imaging method based on the normally invisible intermolecular multiple-quantum coherence (1)H MR signal. This method, which doesn't require special hardware modifications, can be used to overcome partial volume effect, the major limitation of MR-based approaches that are currently being investigated for the detection of BAT in humans. With this method we can exploit the characteristic cellular structure of BAT to selectively image it, even when (as in humans) it is intimately mixed with other tissues. We demonstrate and validate this method in mice using PET scans and histology. We compare this methodology with conventional (1)H MR fat fraction methods. Finally, we investigate its feasibility for the detection of BAT in humans.


Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Marrom/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Teoria Quântica , Radiografia
20.
Magn Reson Med ; 68(4): 1285-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22231619

RESUMO

The recent discovery of active brown adipose tissue (BAT) in adult humans and the correlation found between the activity of this tissue and resting metabolic rate strongly suggest that this tissue may be implicated in the development of obesity in humans, as it is in rodents. Despite the possible physiological role of this tissue in the onset of human obesity, few noninvasive imaging techniques to detect BAT activity in humans exist. The scope of this work is to investigate the possibility of detecting BAT activity using blood-oxygen-level-dependent MRI. Our results show that the strong increase in oxygen consumption and consequent increase in blood deoxyhemoglobin levels following BAT activation lead to a well-localized signal drop in BAT. This strongly suggests the possibility to use blood-oxygen-level-dependent MRI for the noninvasive detection of BAT activity.


Assuntos
Tecido Adiposo Marrom/fisiologia , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/sangue , Tecido Adiposo Marrom/anatomia & histologia , Tecido Adiposo Marrom/irrigação sanguínea , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...