Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616731

RESUMO

Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a ß-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in ß-DG causes Muscle-Eye-Brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant ß-DG is altered in the glial perivascular endfeet resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and ß-DG protein levels are significantly reduced in muscle and brain of mutant mice. Due to the partially penetrant developmental phenotype of the C669F-ß-DG mice, they represent a novel and highly valuable mouse model to study the molecular effects of ß-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.

2.
Antiviral Res ; 224: 105837, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387750

RESUMO

The COVID-19 pandemic has shown the need to develop effective therapeutics in preparedness for further epidemics of virus infections that pose a significant threat to human health. As a natural compound antiviral candidate, we focused on α-dystroglycan, a highly glycosylated basement membrane protein that links the extracellular matrix to the intracellular cytoskeleton. Here we show that the N-terminal fragment of α-dystroglycan (α-DGN), as produced in E. coli in the absence of post-translational modifications, blocks infection of SARS-CoV-2 in cell culture, human primary gut organoids and the lungs of transgenic mice expressing the human receptor angiotensin I-converting enzyme 2 (hACE2). Prophylactic and therapeutic administration of α-DGN reduced SARS-CoV-2 lung titres and protected the mice from respiratory symptoms and death. Recombinant α-DGN also blocked infection of a wide range of enveloped viruses including the four Dengue virus serotypes, influenza A virus, respiratory syncytial virus, tick-borne encephalitis virus, but not human adenovirus, a non-enveloped virus in vitro. This study establishes soluble recombinant α-DGN as a broad-band, natural compound candidate therapeutic against enveloped viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Distroglicanas , Pandemias , Escherichia coli , Camundongos Transgênicos , Antivirais/farmacologia
3.
Brain Sci ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391697

RESUMO

Assessing executive functions in individuals with disorders or clinical conditions can be challenging, as they may lack the abilities needed for conventional test formats. The use of more personalized test versions, such as adaptive assessments, might be helpful in evaluating individuals with specific needs. This paper introduces PsycAssist, a web-based artificial intelligence system designed for neuropsychological adaptive assessment and training. PsycAssist is a highly flexible and scalable system based on procedural knowledge space theory and may be used potentially with many types of tests. We present the architecture and adaptive assessment engine of PsycAssist and the two currently available tests: Adap-ToL, an adaptive version of the Tower of London-like test to assess planning skills, and MatriKS, a Raven-like test to evaluate fluid intelligence. Finally, we describe the results of an investigation of the usability of Adap-ToL and MatriKS: the evaluators perceived these tools as appropriate and well-suited for their intended purposes, and the test-takers perceived the assessment as a positive experience. To sum up, PsycAssist represents an innovative and promising tool to tailor evaluation and training to the specific characteristics of the individual, useful for clinical practice.

4.
Biochem Biophys Res Commun ; 703: 149656, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364681

RESUMO

Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane ß-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. ß-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with ß-DG, HEK-293 cells were transiently transfected with a plasmid carrying the ß-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing ß-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for ß-DG binding. A series of already known ß-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel ß-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with ß-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires ß-DG for a proper nuclear localization. These results expand the role of ß-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.


Assuntos
Distroglicanas , Distrofias Musculares , Humanos , Distroglicanas/química , Células HEK293 , Proteômica , Distrofias Musculares/metabolismo , Membrana Nuclear/metabolismo
5.
Biochem J ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164968

RESUMO

Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.

6.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894956

RESUMO

Muscle weakness and muscle loss characterize many physio-pathological conditions, including sarcopenia and many forms of muscular dystrophy, which are often also associated with mitochondrial dysfunction. Verbascoside, a phenylethanoid glycoside of plant origin, also named acteoside, has shown strong antioxidant and anti-fatigue activity in different animal models, but the molecular mechanisms underlying these effects are not completely understood. This study aimed to investigate the influence of verbascoside on mitochondrial function and its protective role against H2O2-induced oxidative damage in murine C2C12 myoblasts and myotubes pre-treated with verbascoside for 24 h and exposed to H2O2. We examined the effects of verbascoside on cell viability, intracellular reactive oxygen species (ROS) production and mitochondrial function through high-resolution respirometry. Moreover, we verified whether verbascoside was able to stimulate nuclear factor erythroid 2-related factor (Nrf2) activity through Western blotting and confocal fluorescence microscopy, and to modulate the transcription of its target genes, such as heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), by Real Time PCR. We found that verbascoside (1) improved mitochondrial function by increasing mitochondrial spare respiratory capacity; (2) mitigated the decrease in cell viability induced by H2O2 and reduced ROS levels; (3) promoted the phosphorylation of Nrf2 and its nuclear translocation; (4) increased the transcription levels of HO-1 and, in myoblasts but not in myotubes, those of PGC-1α. These findings contribute to explaining verbascoside's ability to relieve muscular fatigue and could have positive repercussions for the development of therapies aimed at counteracting muscle weakness and mitochondrial dysfunction.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Antioxidantes/metabolismo , Linhagem Celular , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Behav Res Methods ; 55(7): 3929-3951, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526887

RESUMO

Procedural knowledge space theory (PKST) was recently proposed by Stefanutti (British Journal of Mathematical and Statistical Psychology, 72(2) 185-218, 2019) for the assessment of human problem-solving skills. In PKST, the problem space formally represents how a family of problems can be solved and the knowledge space represents the skills required for solving those problems. The Markov solution process model (MSPM) by Stefanutti et al. (Journal of Mathematical Psychology, 103, 102552, 2021) provides a probabilistic framework for modeling the solution process of a task, via PKST. In this article, three adaptive procedures for the assessment of problem-solving skills are proposed that are based on the MSPM. Beside execution correctness, they also consider the sequence of moves observed in the solution of a problem with the aim of increasing efficiency and accuracy of assessments. The three procedures differ from one another in the assumption underlying the solution process, named pre-planning, interim-planning, and mixed-planning. In two simulation studies, the three adaptive procedures have been compared to one another and to the continuous Markov procedure (CMP) by Doignon and Falmagne (1988a). The last one accounts for dichotomous correct/wrong answers only. Results show that all the MSP-based adaptive procedures outperform the CMP in both accuracy and efficiency. These results have been obtained in the framework of the Tower of London test but the procedures can also be applied to all psychological and neuropsychological tests that have a problem space. Thus, the adaptive procedures presented in this paper pave the way to the adaptive assessment in the area of neuropsychological tests.


Assuntos
Algoritmos , Resolução de Problemas , Humanos , Matemática , Simulação por Computador , Cadeias de Markov , Testes Neuropsicológicos
8.
Front Cardiovasc Med ; 9: 813904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355976

RESUMO

Background: Mature cardiomyocytes are unable to proliferate, preventing the injured adult heart from repairing itself. Studies in rodents have suggested that the extracellular matrix protein agrin promotes cardiomyocyte proliferation in the developing heart and that agrin expression is downregulated shortly after birth, resulting in the cessation of proliferation. Agrin based therapies have proven successful at inducing repair in animal models of cardiac injury, however whether similar pathways exist in the human heart is unknown. Methods: Right ventricular (RV) biopsies were collected from 40 patients undergoing surgery for congenital heart disease and the expression of agrin and associated proteins was investigated. Results: Agrin transcripts were found in all samples and their levels were significantly negatively correlated to age (p = 0.026), as were laminin transcripts (p = 0.023), whereas no such correlation was found for the other proteins analyzed. No significant correlations for any of the proteins were found when grouping patients by their gender or pathology. Immunohistochemistry and western blots to detect and localize agrin and the other proteins under analysis in RV tissue, confirmed their presence in patients of all ages. Conclusions: We show that agrin is progressively downregulated with age in human RV tissue but not as dramatically as has been demonstrated in mice; highlighting both similarities and differences to findings in rodents. Our results lay the groundwork for future studies exploring the potential of agrin-based therapies in the repair of damaged human hearts.

9.
Assessment ; 29(2): 225-241, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016093

RESUMO

The use of observational tools in psychological assessment has decreased in recent years, mainly due to its personnel and time costs, and researchers have not explored methodological innovations like adaptive algorithms in observational assessment. In the present study, we introduce the behavior-driven observation procedure to develop, test, and implement observational adaptive instruments. In Study 1, we use a preexisting observational checklist to evaluate nonverbal behaviors related to psychotic symptoms and to specify the adaptive algorithm's model. We fit the model to observational data collected from 114 participants. The results support the model's goodness of fit. In Study 2, we use the estimated model parameters to calibrate the adaptive procedure and test the algorithm for accuracy and efficiency in adaptively reconstructing 58 nonadaptively collected response patterns. The results show the algorithm's good accuracy and efficiency, with a 40% average reduction in the number of administered items. In Study 3, we used real raters to test the adaptive checklist built with behavior-driven observation. The results indicate adequate intrarater agreement and good consistency of the observed response patterns. In conclusion, the results support the possibility of using behavior-driven observation to create accurate and affordable (in terms of resources) observational assessment tools.


Assuntos
Algoritmos , Lista de Checagem , Humanos
10.
Open Biol ; 11(9): 210104, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582712

RESUMO

The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane ß-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.


Assuntos
Distroglicanas/metabolismo , Enzimas/metabolismo , Epitopos/metabolismo , Evolução Molecular , Laminina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Distroglicanas/química , Glicosilação , Humanos , Filogenia , Processamento de Proteína Pós-Traducional , Homologia de Sequência
11.
Artigo em Inglês | MEDLINE | ID: mdl-32974301

RESUMO

[This corrects the article on p. 594 in vol. 8, PMID: 32612983.].

12.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824881

RESUMO

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Distroglicanas/química , Distroglicanas/genética , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica
13.
Artigo em Inglês | MEDLINE | ID: mdl-32612983

RESUMO

After cardiac injury, the mammalian adult heart has a very limited capacity to regenerate, due to the inability of fully differentiated cardiomyocytes (CMs) to efficiently proliferate. This has been directly linked to the extracellular matrix (ECM) surrounding and connecting cardiomyocytes, as its increasing rigidity during heart maturation has a crucial impact over the proliferative capacity of CMs. Very recent studies using mouse models have demonstrated how the ECM protein agrin might promote heart regeneration through CMs de-differentiation and proliferation. In maturing CMs, this proteoglycan would act as an inducer of a specific molecular pathway involving ECM receptor(s) within the transmembrane dystrophin-glycoprotein complex (DGC) as well as intracellular Yap, an effector of the Hippo pathway involved in the replication/regeneration program of CMs. According to the mechanism proposed, during mice heart development agrin gets progressively downregulated and ultimately replaced by other ECM proteins eventually leading to loss of proliferation/ regenerative capacity in mature CMs. Although the role played by the agrin-DGC-YAP axis during human heart development remains still largely to be defined, this scenario opens up fascinating and promising therapeutic avenues. Herein, we discuss the currently available relevant information on this system, with a view to explore how the fundamental understanding of the regenerative potential of this cellular program can be translated into therapeutic treatment of injured human hearts.

14.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674290

RESUMO

Nuclear ß-dystroglycan (ß-DG) is involved in the maintenance of nuclear architecture and function. Nonetheless, its relevance in defined nuclear processes remains to be determined. In this study we generated a C2C12 cell-based DG-null model using CRISPR-Cas9 technology to provide insights into the role of ß-DG on nuclear processes. Since DG-null cells exhibited decreased levels of lamin B1, we aimed to elucidate the contribution of DG to senescence, owing to the central role of lamin B1 in this pathway. Remarkably, the lack of DG enables C2C12 cells to acquire senescent features, including cell-cycle arrest, increased senescence-associated-ß-galactosidase activity, heterochromatin loss, aberrant nuclear morphology and nucleolar disruption. We demonstrated that genomic instability is one driving cause of the senescent phenotype in DG-null cells via the activation of a DNA-damage response associated with mitotic failure, as shown by the presence of multipolar mitotic spindles, which in turn induced the formation of micronuclei and γH2AX foci (DNA-damage marker), telomere shortening and p53/p21 upregulation. Altogether, these events might ultimately lead to premature senescence, impeding the replication of the damaged genome. In summary, we present evidence supporting a role for DG in protecting against senescence, through the maintenance of proper lamin B1 expression/localization and proper mitotic spindle organization.


Assuntos
Senescência Celular/genética , Distroglicanas/genética , Instabilidade Genômica/genética , Mitose/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Núcleo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/genética , Histonas/genética , Lamina Tipo B/genética , Camundongos , Camundongos Knockout , Fuso Acromático/genética , Telômero/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética , beta-Galactosidase/genética
15.
J Chem Inf Model ; 60(6): 3145-3156, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32356985

RESUMO

The acetylglucosaminyltransferase-like protein LARGE1 is an enzyme that is responsible for the final steps of the post-translational modifications of dystroglycan (DG), a membrane receptor that links the cytoskeleton with the extracellular matrix in the skeletal muscle and in a variety of other tissues. LARGE1 acts by adding the repeating disaccharide unit [-3Xyl-α1,3GlcAß1-] to the extracellular portion of the DG complex (α-DG); defects in the LARGE1 gene result in an aberrant glycosylation of α-DG and consequent impairment of its binding to laminin, eventually affecting the connection between the cell and the extracellular environment. In the skeletal muscle, this leads to degeneration of the muscular tissue and muscular dystrophy. So far, a few missense mutations have been identified within the LARGE1 protein and linked to congenital muscular dystrophy, and because no structural information is available on this enzyme, our understanding of the molecular mechanisms underlying these pathologies is still very limited. Here, we generated a 3D model structure of the two catalytic domains of LARGE1, combining different molecular modeling approaches. Furthermore, by using molecular dynamics simulations, we analyzed the effect on the structure and stability of the first catalytic domain of the pathological missense mutation S331F that gives rise to a severe form of muscle-eye-brain disease.


Assuntos
Distroglicanas , Laminina , N-Acetilglucosaminiltransferases/química , Animais , Distroglicanas/química , Glicosilação , Laminina/química , Camundongos , Simulação de Dinâmica Molecular , Processamento de Proteína Pós-Traducional
16.
Front Mol Biosci ; 6: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984766

RESUMO

Dystroglycan (DG) is an adhesion complex that links the cytoskeleton to the surrounding extracellular matrix in skeletal muscle and a wide variety of other tissues. It is composed of a highly glycosylated extracellular α-DG associated noncovalently with a transmembrane ß-DG whose cytodomain interacts with dystrophin and its isoforms. Alpha-dystroglycan (α-DG) binds tightly and in a calcium-dependent fashion to multiple extracellular proteins and proteoglycans, each of which harbors at least one, or, more frequently, tandem arrays of laminin-globular (LG) domains. Considerable biochemical and structural work has accumulated on the α-DG-binding LG domains, highlighting a significant heterogeneity in ligand-binding properties of domains from different proteins as well as between single and multiple LG domains within the same protein. Here we review biochemical, structural, and functional information on the LG domains reported to bind α-dystroglycan. In addition, we have incorporated bioinformatics and modeling to explore whether specific motifs responsible for α-dystroglycan recognition can be identified within isolated LG domains. In particular, we analyzed the LG domains of slits and agrin as well as those of paradigmatic α-DG non-binders such as laminin-α3. While some stretches of basic residues may be important, no universally conserved motifs could be identified. However, the data confirm that the coordinated calcium atom within the LG domain is needed to establish an interaction with the sugars of α-DG, although it appears that this alone is insufficient to mediate significant α-DG binding. We develop a scenario involving different binding modes of a single LG domain unit, or tandemly repeated units, with α-DG. A variability of binding modes might be important to generate a range of affinities to allow physiological regulation of this interaction, reflecting its crucial biological importance.

17.
Atten Percept Psychophys ; 81(6): 2102-2119, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30911998

RESUMO

The assumption that people are able to numerically judge ratios of sensory magnitude is often used to scale sensations. In this study, we tested this assumption for the extensive sensation of length and the intensive sensations of heaviness and brightness. A ratio model fit judged length ratios accurately and fit judged heaviness and brightness ratios inaccurately. Also, most participants could not judge brightness ratios, even if they seemed able to respond nonverbally to the brightness ratios. These results suggest that people may generally be able to judge extensity ratios but not intensity ratios. Participants used auxiliary judgment operations to compensate for their lack of ability to judge intensity ratios. These auxiliary, nonratio operations were found to yield linear scales of intensive sensory magnitude.


Assuntos
Percepção de Tamanho/fisiologia , Percepção Visual/fisiologia , Percepção de Peso/fisiologia , Sensibilidades de Contraste , Feminino , Humanos , Julgamento , Masculino
18.
J Cell Mol Med ; 23(5): 3058-3062, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30838779

RESUMO

Dystroglycan is a major non-integrin adhesion complex that connects the cytoskeleton to the surrounding basement membranes, thus providing stability to skeletal muscle. In Vertebrates, hypoglycosylation of α-dystroglycan has been strongly linked to muscular dystrophy phenotypes, some of which also show variable degrees of cognitive impairments, collectively termed dystroglycanopathies. Only a small number of mutations in the dystroglycan gene, leading to the so called primary dystroglycanopathies, has been described so far, as opposed to the ever-growing number of identified secondary or tertiary dystroglycanopathies (caused by genetic abnormalities in glycosyltransferases or in enzymes involved in the synthesis of the carbohydrate building blocks). The few mutations found within the autonomous N-terminal domain of α-dystroglycan seem to destabilise it to different degrees, without influencing the overall folding and targeting of the dystroglycan complex. On the contrary other mutations, some located at the α/ß interface of the dystroglycan complex, seem to be able to interfere with its maturation, thus compromising its stability and eventually leading to the intracellular engulfment and/or partial or even total degradation of the dystroglycan uncleaved precursor.


Assuntos
Disfunção Cognitiva/genética , Distroglicanas/genética , Distrofias Musculares/genética , Membrana Basal/metabolismo , Disfunção Cognitiva/patologia , Citoesqueleto/genética , Glicosilação , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Mutação/genética
19.
PLoS One ; 13(2): e0192651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447293

RESUMO

Dystroglycan (DG) is a membrane receptor, belonging to the dystrophin-glycoprotein complex (DGC) and formed by two subunits, α-dystroglycan (α-DG) and ß-dystroglycan (ß -DG). The C-terminal domain of α-DG and the N-terminal extracellular domain of ß -DG are connected, providing a link between the extracellular matrix and the cytosol. Under pathological conditions, such as cancer and muscular dystrophies, DG may be the target of metalloproteinases MMP-2 and MMP-9, contributing to disease progression. Previously, we reported that the C-terminal domain α-DG (483-628) domain is particularly susceptible to the catalytic activity of MMP-2; here we show that the α-DG 621-628 region is required to carry out its complete digestion, suggesting that this portion may represent a MMP-2 anchoring site. Following this observation, we synthesized an α-DG based-peptide, spanning the (613-651) C-terminal region. The analysis of the kinetic and thermodynamic parameters of the whole and the isolated catalytic domain of MMP-2 (cdMMP-2) has shown its inhibitory properties, indicating the presence of (at least) two binding sites for the peptide, both located within the catalytic domain, only one of the two being topologically distinct from the catalytic active groove. However, the different behavior between whole MMP-2 and cdMMP-2 envisages the occurrence of an additional binding site for the peptide on the hemopexin-like domain of MMP-2. Interestingly, mass spectrometry analysis has shown that α-DG (613-651) peptide is cleavable even though it is a very poor substrate of MMP-2, a feature that renders this molecule a promising template for developing a selective MMP-2 inhibitor.


Assuntos
Distroglicanas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Cinética , Camundongos , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Termodinâmica
20.
FASEB J ; 32(4): 2223-2234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29233859

RESUMO

Class II chaperonins are essential multisubunit complexes that aid the folding of nonnative proteins in the cytosol of archaea and eukarya. They use energy derived from ATP to drive a series of structural rearrangements that enable polypeptides to fold within their central cavity. These events are regulated by an elaborate allosteric mechanism in need of elucidation. We employed mutagenesis and experimental analysis in concert with in silico molecular dynamics simulations and interface-binding energy calculations to investigate the class II chaperonin from Thermoplasma acidophilum. Here we describe the effects on the asymmetric allosteric mechanism and on hetero-oligomeric complex formation in a panel of mutants in the ATP-binding pocket of the α and ß subunits. Our observations reveal a potential model for a nonconcerted folding mechanism optimized for protecting and refolding a range of nonnative substrates under different environmental conditions, starting to unravel the role of subunit heterogeneity in this folding machine and establishing important links with the behavior of the most complex eukaryotic chaperonins.-Shoemark, D. K., Sessions, R. B., Brancaccio, A., Bigotti, M. G. Intraring allostery controls the function and assembly of a hetero-oligomeric class II chaperonin.


Assuntos
Sítio Alostérico , Proteínas Arqueais/química , Chaperoninas do Grupo II/química , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas Arqueais/metabolismo , Chaperoninas do Grupo II/metabolismo , Ligação Proteica , Multimerização Proteica , Thermoplasma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...