Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36551410

RESUMO

Klebsiella pneumoniae is a multidrug-resistant opportunistic human pathogen related to various infections. As such, synthetic peptides have emerged as potential alternative molecules. Mo-CBP3-PepI has presented great activity against K. pneumoniae by presenting an MIC50 at a very low concentration (31.25 µg mL-1). Here, fluorescence microscopy and proteomic analysis revealed the alteration in cell membrane permeability, ROS overproduction, and protein profile of K. pneumoniae cells treated with Mo-CBP3-PepI. Mo-CBP3-PepI led to ROS overaccumulation and membrane pore formation in K. pneumoniae cells. Furthermore, the proteomic analysis highlighted changes in essential metabolic pathways. For example, after treatment of K. pneumoniae cells with Mo-CBP3-PepI, a reduction in the abundance of protein related to DNA and protein metabolism, cytoskeleton and cell wall organization, redox metabolism, regulation factors, ribosomal proteins, and resistance to antibiotics was seen. The reduction in proteins involved in vital processes for cell life, such as DNA repair, cell wall turnover, and protein turnover, results in the accumulation of ROS, driving the cell to death. Our findings indicated that Mo-CBP3-PepI might have mechanisms of action against K. pneumoniae cells, mitigating the development of resistance and thus being a potent molecule to be employed in producing new drugs against K. pneumoniae infections.

2.
Pathogens ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145427

RESUMO

Staphylococcus aureus is a human pathogen known to be resistant to antibiotics since the mid-20th century and is constantly associated with hospital-acquired infections. S. aureus forms biofilms, which are complex surface-attached communities of bacteria held together by a self-produced polymer matrix consisting of proteins, extracellular DNA, and polysaccharides. Biofilms are resistance structures responsible for increasing bacterial resistance to drugs by 1000 times more than the planktonic lifestyle. Therefore, studies have been conducted to discover novel antibacterial molecules to prevent biofilm formation and/or degrade preformed biofilms. Synthetic antimicrobial peptides (SAMPs) have appeared as promising alternative agents to overcome increasing antibiotic resistance. Here, the antibiofilm activity of eight SAMPs, in combination with the antibiotic ciprofloxacin, was investigated in vitro. Biofilm formation by S. aureus was best inhibited (76%) by the combination of Mo-CBP3-PepIII (6.2 µg mL-1) and ciprofloxacin (0.39 µg mL-1). In contrast, the highest reduction (60%) of the preformed biofilm mass was achieved with RcAlb-PepII (1.56 µg mL-1) and ciprofloxacin (0.78 µg mL-1). Fluorescence microscopy analysis reinforced these results. These active peptides formed pores in the cellular membrane of S. aureus, which may be related to the enhanced ciprofloxacin's antibacterial activity. Our findings indicated that these peptides may act with ciprofloxacin and are powerful co-adjuvant agents for the treatment of S. aureus infections.

3.
Pharmaceutics ; 14(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015304

RESUMO

Cryptococcus neoformans is a human-pathogenic yeast responsible for pneumonia and meningitis, mainly in patients immunocompromised. Infections caused by C. neoformans are a global health concern. Synthetic antimicrobial peptides (SAMPs) have emerged as alternative molecules to cope with fungal infections, including C. neoformans. Here, eight SAMPs were tested regarding their antifungal potential against C. neoformans and had their mechanisms of action elucidated by fluorescence and scanning electron microscopies. Five SAMPs showed an inhibitory effect (MIC50) on C. neoformans growth at low concentrations. Fluorescence microscope (FM) revealed that SAMPs induced 6-kDa pores in the C. neoformans membrane. Inhibitory assays in the presence of ergosterol revealed that some peptides lost their activity, suggesting interaction with it. Furthermore, FM analysis revealed that SAMPs induced caspase 3/7-mediated apoptosis and DNA degradation in C. neoformans cells. Scanning Electron Microscopy (SEM) analysis revealed that peptides induced many morphological alterations such as cell membrane, wall damage, and loss of internal content on C. neoformans cells. Our results strongly suggest synthetic peptides are potential alternative molecules to control C. neoformans growth and treat the cryptococcal infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA