Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 184, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990341

RESUMO

Pathogenic germline variants in the DNA polymerase genes POLE and POLD1 cause polymerase proofreading-associated polyposis, a dominantly inherited disorder with increased risk of colorectal carcinomas and other tumors. POLE/POLD1 variants may result in high somatic mutation and neoantigen loads that confer susceptibility to immune checkpoint inhibitors (ICIs). To explore the role of POLE/POLD1 germline variants in glioma predisposition, whole-exome sequencing was applied to leukocyte DNA of glioma patients from 61 tumor families with at least one glioma case each. Rare heterozygous POLE/POLD1 missense variants predicted to be deleterious were identified in glioma patients from 10 (16%) families, co-segregating with the tumor phenotype in families with available DNA from several tumor patients. Glioblastoma patients carrying rare POLE variants had a mean overall survival of 21 months. Additionally, germline variants in POLD1, located at 19q13.33, were detected in 2/34 (6%) patients with 1p/19q-codeleted oligodendrogliomas, while POLE variants were identified in 2/4 (50%) glioblastoma patients with a spinal metastasis. In 13/15 (87%) gliomas from patients carrying POLE/POLD1 variants, features of defective polymerase proofreading, e.g. hypermutation, POLE/POLD1-associated mutational signatures, multinucleated cells, and increased intratumoral T cell response, were observed. In a CRISPR/Cas9-derived POLE-deficient LN-229 glioblastoma cell clone, a mutator phenotype and delayed S phase progression were detected compared to wildtype POLE cells. Our data provide evidence that rare POLE/POLD1 germline variants predispose to gliomas that may be susceptible to ICIs. Data compiled here suggest that glioma patients carrying POLE/POLD1 variants may be recognized by cutaneous manifestations, e.g. café-au-lait macules, and benefit from surveillance colonoscopy.


Assuntos
Glioblastoma , Glioma , Humanos , DNA Polimerase II/genética , Domínio Catalítico , Mutação em Linhagem Germinativa , Glioma/genética , DNA , DNA Polimerase III/genética
2.
Lab Anim (NY) ; 52(8): 183-188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488410

RESUMO

Colony management of gene-modified animals is time-consuming, costly and affected by random events related to Mendelian genetics, fertility and litter size. Careful planning is mandatory to ensure successful outcomes using the least number of animals, hence adhering to the 3R principles of animal welfare. Here we have developed an R package, accessible also through an interactive public website, that optimizes breeding design by providing information about the optimal number of breedings needed to obtain defined breeding outcomes, taking into account specific species, strain, or line properties and success probability. Our software also enables breeding planning for balanced male-to-female ratio or single-sex experiments. We show that, for single-sex designs, the necessary number of breedings is at least doubled compared to the use of all born animals. While the presented tool provides preset parameters for the laboratory mouse, it can be readily used for any other species.


Assuntos
Software , Gravidez , Animais , Camundongos , Feminino , Masculino , Tamanho da Ninhada de Vivíparos/genética
3.
Hum Genet ; 142(1): 73-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36066768

RESUMO

Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Desgrenhadas/genética
4.
J Neurol ; 269(9): 4863-4871, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503374

RESUMO

BACKGROUND: Recent evidence points toward a role of the small ubiquitin-like modifier (SUMO) system, including SUMO4, in protecting from stress insults and neurodegeneration, such as the progressive motor neuron disease amyotrophic lateral sclerosis (ALS), e.g., by regulating stress granule (SG) dynamics. Here, we investigated whether SUMO4 variants play a role in ALS pathogenesis. METHODS: Whole-exome or targeted SUMO4 sequencing was done in 222 unrelated European ALS patients. The consequences of the identified initiator codon variant were analyzed at the mRNA, protein and cellular level. SUMO4 expression was quantified in human tissues. All patients were subjected to clinical, electrophysiological, and neuroradiological characterization. RESULTS: A rare heterozygous SUMO4 variant, i.e., SUMO4:c.2T>C p.Met1?, was detected in four of 222 (1.8%) ALS patients, significantly more frequently than in two control cohorts (0.3% each). SUMO4 mRNA and protein expression was diminished in whole blood or fibroblasts of a SUMO4 variant carrier versus controls. Pertinent stress factors, i.e., head trauma or cancer (treated by radiochemotherapy), were significantly more frequent in SUMO4 variant carrier versus non-carrier ALS patients. The mean number of SGs per cell was significantly higher in fibroblasts of a SUMO4 variant carrier compared to controls at baseline, upon oxidative stress, and after recovery, and SUMOylation of ALS-associated valosin-containing protein by SUMO4 was decreased. SUMO4 mRNA expression was highest in brain of all human tissues analyzed. CONCLUSIONS: Our results are consistent with SUMO4 haploinsufficiency as a contributor to ALS pathogenesis impacting SG dynamics and possibly acting in conjunction with environmental oxidative stress-related factors.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/patologia , Códon de Iniciação , Exoma , Humanos , Proteínas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Grânulos de Estresse
5.
Acta Neuropathol ; 142(1): 191-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33929593

RESUMO

The genetic basis of brain tumor development is poorly understood. Here, leukocyte DNA of 21 patients from 15 families with ≥ 2 glioma cases each was analyzed by whole-genome or targeted sequencing. As a result, we identified two families with rare germline variants, p.(A592T) or p.(A817V), in the E-cadherin gene CDH1 that co-segregate with the tumor phenotype, consisting primarily of oligodendrogliomas, WHO grade II/III, IDH-mutant, 1p/19q-codeleted (ODs). Rare CDH1 variants, previously shown to predispose to gastric and breast cancer, were significantly overrepresented in these glioma families (13.3%) versus controls (1.7%). In 68 individuals from 28 gastric cancer families with pathogenic CDH1 germline variants, brain tumors, including a pituitary adenoma, were observed in three cases (4.4%), a significantly higher prevalence than in the general population (0.2%). Furthermore, rare CDH1 variants were identified in tumor DNA of 6/99 (6%) ODs. CDH1 expression was detected in undifferentiated and differentiating oligodendroglial cells isolated from rat brain. Functional studies using CRISPR/Cas9-mediated knock-in or stably transfected cell models demonstrated that the identified CDH1 germline variants affect cell membrane expression, cell migration and aggregation. E-cadherin ectodomain containing variant p.(A592T) had an increased intramolecular flexibility in a molecular dynamics simulation model. E-cadherin harboring intracellular variant p.(A817V) showed reduced ß-catenin binding resulting in increased cytosolic and nuclear ß-catenin levels reverted by treatment with the MAPK interacting serine/threonine kinase 1 inhibitor CGP 57380. Our data provide evidence for a role of deactivating CDH1 variants in the risk and tumorigenesis of neuroepithelial and epithelial brain tumors, particularly ODs, possibly via WNT/ß-catenin signaling.


Assuntos
Antígenos CD/genética , Neoplasias Encefálicas/genética , Caderinas/genética , Carcinoma/genética , Neoplasias Neuroepiteliomatosas/genética , Adenoma/genética , Adenoma/patologia , Compostos de Anilina/uso terapêutico , Animais , Diversidade de Anticorpos , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma/tratamento farmacológico , DNA de Neoplasias/genética , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Humanos , Neoplasias Neuroepiteliomatosas/tratamento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Purinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Sequenciamento Completo do Genoma
6.
Genes (Basel) ; 13(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35052424

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive upper and lower motor neuron (LMN) loss. As ALS and other neurodegenerative diseases share genetic risk factors, we performed whole-exome sequencing in ALS patients focusing our analysis on genes implicated in neurodegeneration. Thus, variants in the DHTKD1 gene encoding dehydrogenase E1 and transketolase domain containing 1 previously linked to 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth (CMT) disease type 2, and spinal muscular atrophy (SMA) were identified. In two independent European ALS cohorts (n = 643 cases), 10 sporadic cases of 225 (4.4%) predominantly sporadic patients of cohort 1, and 12 familial ALS patients of 418 (2.9%) ALS families of cohort 2 harbored 14 different rare heterozygous DHTKD1 variants predicted to be deleterious. Four DHTKD1 variants were previously described pathogenic variants, seven were recurrent, and eight were located in the E1_dh dehydrogenase domain. Nonsense variants located in the E1_dh domain were significantly more prevalent in ALS patients versus controls. The phenotype of ALS patients carrying DHTKD1 variants partially overlapped with CMT and SMA by presence of sensory impairment and a higher frequency of LMN-predominant cases. Our results argue towards rare heterozygous DHTKD1 variants as potential contributors to ALS phenotype and, possibly, pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Heterozigoto , Complexo Cetoglutarato Desidrogenase/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Projetos Piloto , Prognóstico
7.
Eur J Hum Genet ; 28(12): 1681-1693, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32737436

RESUMO

Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Pré-Escolar , Feminino , Fator 6 de Diferenciação de Crescimento/metabolismo , Heterozigoto , Humanos , Lactente , Túbulos Renais/anormalidades , Túbulos Renais/metabolismo , Masculino , Camundongos , Mutação , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/patologia , Xenopus
8.
Acta Neuropathol ; 139(1): 175-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31473790

RESUMO

In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Divisão Celular/genética , Feminino , Fase G2/genética , Humanos , Masculino , Microtúbulos/genética , Pessoa de Meia-Idade , Deleção de Sequência , Adulto Jovem
9.
Acta Neuropathol ; 134(6): 905-922, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030706

RESUMO

In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.


Assuntos
Adenosina Desaminase/genética , Predisposição Genética para Doença , Interferon Tipo I/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease H/genética , Adenosina Desaminase/metabolismo , Adulto , Animais , Células Cultivadas , Estudos de Coortes , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Fibroblastos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos Knockout , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Estabilidade Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/genética
10.
Hum Mol Genet ; 26(9): 1716-1731, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334964

RESUMO

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. As CAKUT is a genetically heterogeneous disorder and most cases are genetically unexplained, we aimed to identify new CAKUT causing genes. Using whole-exome sequencing and trio-based de novo analysis, we identified a novel heterozygous de novo frameshift variant in the leukemia inhibitory factor receptor (LIFR) gene causing instability of the mRNA in a patient presenting with bilateral CAKUT and requiring kidney transplantation at one year of age. LIFR encodes a transmembrane receptor utilized by IL-6 family cytokines, mainly by the leukemia inhibitory factor (LIF). Mutational analysis of 121 further patients with severe CAKUT yielded two rare heterozygous LIFR missense variants predicted to be pathogenic in three unrelated patients. LIFR mutants showed decreased half-life and cell membrane localization resulting in reduced LIF-stimulated STAT3 phosphorylation. LIFR showed high expression in human fetal kidney and the human ureter, and was also expressed in the developing murine urogenital system. Lifr knockout mice displayed urinary tract malformations including hydronephrosis, hydroureter, ureter ectopia, and, consistently, reduced ureteral lumen and muscular hypertrophy, similar to the phenotypes observed in patients carrying LIFR variants. Additionally, a form of cryptorchidism was detected in all Lifr-/- mice and the patient carrying the LIFR frameshift mutation. Altogether, we demonstrate heterozygous novel or rare LIFR mutations in 3.3% of CAKUT patients, and provide evidence that Lifr deficiency and deactivating LIFR mutations cause highly similar anomalies of the urogenital tract in mice and humans.


Assuntos
Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Anormalidades Urogenitais/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Exoma , Feminino , Heterozigoto , Humanos , Lactente , Rim/anormalidades , Rim/patologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Análise de Sequência de DNA , Ureter/anormalidades , Ureter/patologia , Sistema Urinário/patologia
11.
J Inflamm (Lond) ; 13(1): 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563282

RESUMO

BACKGROUND: Interleukin (IL)-1ß is involved in the pathology of intervertebral disc degeneration. Under normal conditions, IL-1ß is present in cells in an inactive form (pro-IL-1ß). However, under pathological conditions, pro-IL-1ß is turned into its active form (IL-1ß) by the inflammasome, a multi-protein complex of the innate immune response that activates caspase-1. Under conditions of degeneration, the disc experiences an environment of increased acidification. However, the implications of acidification on the innate immune response remain poorly explored. METHODS: Here we have studied how pH changes in human nucleus pulposus cells affect inflammasome activation by immunoblot analysis of protein lysates obtained from nucleus pulposus cells that were exposed to different pH levels in culture. RESULTS: In this study, we have found that in nucleus pulposus cells, with increased acidification, there was a decrease in inflammasome activation consistent with lower levels of active IL-1ß. However, this effect at a pH of 6.5, the lowest pH level tested, was abrogated when cells were treated with IL-1ß. CONCLUSIONS: Taken together, these findings suggest that the inflammatory response through IL-1ß experienced by the human disc is not initiated in nucleus pulposus cells when the stimulus is acidification.

12.
Hum Genet ; 135(1): 69-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26572137

RESUMO

Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis.


Assuntos
Exoma , Proteínas Ativadoras de GTPase/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Feminino , Proteínas Ativadoras de GTPase/química , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
13.
J Neurochem ; 136(3): 492-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490364

RESUMO

Periodic treatments with estrogen receptor subtype-ß (ER-ß) agonist reduce post-ischemic hippocampal injury in ovariectomized rats. However, the underlying mechanism of how ER-ß agonists protect the brain remains unknown. Global cerebral ischemia activates the innate immune response, and a key component of the innate immune response is the inflammasome. This study tests the hypothesis that ER-ß regulates inflammasome activation in the hippocampus, thus reducing ischemic hippocampal damage in reproductively senescent female rats that received periodic ER-ß agonist treatments. First, we determined the effect of hippocampal ER-ß silencing on the expression of the inflammasome proteins caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC), and interleukin (IL)-1ß. Silencing of ER-ß attenuated 17ß-estradiol mediated decrease in caspase 1, ASC, and IL-1ß. Next, we tested the hypothesis that periodic ER-ß agonist treatment reduces inflammasome activation and ischemic damage in reproductively senescent female rats. Periodic ER-ß agonist treatments significantly decreased inflammasome activation and increased post-ischemic live neuronal counts by 32% (p < 0.05) as compared to the vehicle-treated, reproductively senescent rats. Current findings demonstrated that ER-ß activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats. Further investigation on the role of a periodic ER-ß agonist regimen to reduce the innate immune response in the brain could help reduce the incidence and the impact of global cerebral ischemia in post-menopausal women. We propose that estrogen receptor subtype-ß (ER-ß) activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats.


Assuntos
Envelhecimento , Isquemia Encefálica/complicações , Receptor beta de Estrogênio/metabolismo , Hipocampo/metabolismo , Inflamassomos/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Imunidade Inata/efeitos dos fármacos , NAD/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
14.
J Neurochem ; 136 Suppl 1: 39-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25628216

RESUMO

Neuroinflammation is a response against harmful effects of diverse stimuli and participates in the pathogenesis of brain and spinal cord injury (SCI). The innate immune response plays a role in neuroinflammation following CNS injury via activation of multiprotein complexes termed inflammasomes that regulate the activation of caspase 1 and the processing of the pro-inflammatory cytokines IL-1ß and IL-18. We report here that the expression of components of the nucleotide-binding and oligomerization domain (NOD)-like receptor protein-1 (NLRP-1) inflammasome, apoptosis speck-like protein containing a caspase recruitment domain (ASC), and caspase 1 are significantly elevated in spinal cord motor neurons and cortical neurons after CNS trauma. Moreover, NLRP1 inflammasome proteins are present in exosomes derived from CSF of SCI and traumatic brain-injured patients following trauma. To investigate whether exosomes could be used to therapeutically block inflammasome activation in the CNS, exosomes were isolated from embryonic cortical neuronal cultures and loaded with short-interfering RNA (siRNA) against ASC and administered to spinal cord-injured animals. Neuronal-derived exosomes crossed the injured blood-spinal cord barrier, and delivered their cargo in vivo, resulting in knockdown of ASC protein levels by approximately 76% when compared to SCI rats treated with scrambled siRNA. Surprisingly, siRNA silencing of ASC also led to a significant decrease in caspase 1 activation and processing of IL-1ß after SCI. These findings indicate that exosome-mediated siRNA delivery may be a strong candidate to block inflammasome activation following CNS injury. We propose the following signaling cascade for inflammasome activation in peripheral tissues after CNS injury: CNS trauma induces inflammasome activation in the nervous system and secretion of exosomes containing inflammasome protein cargo into cerebral spinal fluid. The inflammasome containing exosomes then fuse with target cells to activate the innate immune response in peripheral tissues. We suggest that these findings may be used to develop new therapeutics to treat the devastating inflammation and cell destruction evoked by CNS injuries. IL-1ß and IL-18 = pro-inflammatory cytokines.


Assuntos
Exossomos/fisiologia , Inflamassomos/biossíntese , Inflamassomos/líquido cefalorraquidiano , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/líquido cefalorraquidiano , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/patologia , Adulto Jovem
15.
J Inflamm (Lond) ; 12: 52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26379474

RESUMO

BACKGROUND: Focal cerebral ischemia induces an inflammatory response that when exacerbated contributes to deleterious outcomes. The molecular basis regarding the regulation of the innate immune response after focal cerebral ischemia remains poorly understood. METHODS: In this study we examined the expression of retinoic acid-inducible gene (RIG)-like receptor-I (RIG-I) and its involvement in regulating inflammation after ischemia in the brain of rats subjected to middle cerebral artery occlusion (MCAO). In addition, we studied the regulation of RIG-I after oxygen glucose deprivation (OGD) in astrocytes in culture. RESULTS: In this study we show that in the hippocampus of rats, RIG-I and IFN-α are elevated after MCAO. Consistent with these results was an increased in RIG-I and IFN-α after OGD in astrocytes in culture. These data are consistent with immunohistochemical analysis of hippocampal sections, indicating that in GFAP-positive cells there was an increase in RIG-I after MCAO. In addition, in this study we have identified n-propyl gallate as an inhibitor of IFN-α signaling in astrocytes. CONCLUSION: Our findings suggest a role for RIG-I in contributing to the innate immune response after focal cerebral ischemia.

16.
J Neurotrauma ; 32(4): 228-36, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25111533

RESUMO

The innate immune response contributes to the inflammatory activity after traumatic brain injury (TBI). In the present study we identify macrophage-inducible C-type lectin (mincle) as a pattern recognition receptor that contributes to innate immunity in neurons after TBI. Here we report that mincle is activated by SAP130 in cortical neurons in culture, resulting in production of the inflammatory cytokine TNF. In addition, mincle and SAP130 are elevated in the brain and cerebrospinal fluid of humans after TBI and the brain of rodents after fluid percussion brain injury. Thus, these findings suggest the involvement of mincle to the pathology of TBI. Importantly, blocking mincle with a neutralizing antibody against mincle in cortical neurons in culture treated with SAP130 resulted in inhibition of mincle signaling and decreased TNF production. Therefore, our findings identify mincle as a contributor to the inflammatory response after TBI.


Assuntos
Lesões Encefálicas/imunologia , Imunidade Inata/imunologia , Lectinas Tipo C/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais/imunologia , Adolescente , Adulto , Animais , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Adulto Jovem
17.
J Neuroinflammation ; 11: 67, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24694234

RESUMO

BACKGROUND: Neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD) and involves activation of the innate immune response via recognition of diverse stimuli by pattern recognition receptors (PRRs). The inflammatory inducers and precise innate signaling pathway contributing to AD pathology remain largely undefined. RESULTS: In the present study we analyzed expression levels of innate immune proteins in temporal and occipital cortices from preclinical (no cognitive impairment, NCI, N = 22) to mild cognitive impairment (MCI, N = 20) associated with AD pathology (N = 20) and AD patients (N = 23). We found that retinoic acid-inducible gene-I (RIG-1) is significantly elevated in the temporal cortex and plasma in patients with MCI. In addition, primary human astrocytes stimulated with the RIG-1 ligand 5'ppp RNA showed increased expression of amyloid precursor protein (APP) and amyloid-ß (Aß), supporting the idea that RIG-1 is involved in the pathology of MCI associated with early progression to AD. CONCLUSION: These findings suggest that RIG-1 may play a critical role in incipient AD.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , RNA Helicases DEAD-box/metabolismo , Lobo Occipital/metabolismo , Lobo Temporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Proteína DEAD-box 58 , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Pessoa de Meia-Idade , Lobo Occipital/citologia , Fragmentos de Peptídeos/farmacologia , RNA Viral/farmacologia , Receptores Imunológicos , Lobo Temporal/citologia
18.
J Cereb Blood Flow Metab ; 34(4): 621-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24398937

RESUMO

The central nervous system (CNS) is an active participant in the innate immune response to infection and injury. In these studies, we show embryonic cortical neurons express a functional, deoxyribonucleic acid (DNA)-responsive, absent in melanoma 2 (AIM2) inflammasome that activates caspase-1. Neurons undergo pyroptosis, a proinflammatory cell death mechanism characterized by the following: (a) oligomerization of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC); (b) caspase-1 dependency; (c) formation of discrete pores in the plasma membrane; and (d) release of the inflammatory cytokine interleukin-1ß (IL-1ß). Probenecid and Brilliant Blue FCF, inhibitors of the pannexin1 channel, prevent AIM2 inflammasome-mediated cell death, identifying pannexin1 as a cell death effector during pyroptosis and probenecid as a novel pyroptosis inhibitor. Furthermore, we show activation of the AIM2 inflammasome in neurons by cerebrospinal fluid (CSF) from traumatic brain injury (TBI) patients and oligomerization of ASC. These findings suggest neuronal pyroptosis is an important cell death mechanism during CNS infection and injury that may be attenuated by probenecid.


Assuntos
Apoptose , Inflamassomos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Lesões Encefálicas/líquido cefalorraquidiano , Lesões Encefálicas/imunologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Caspase 1/metabolismo , Técnicas de Cultura de Células , Morte Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamassomos/imunologia , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/patologia , Poli dA-dT/farmacologia , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem
19.
Mol Cell Biol ; 32(13): 2467-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22508986

RESUMO

Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.


Assuntos
Dendritos/metabolismo , Dendritos/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Septinas/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Quinase 6 Ativada por Mitógeno/química , Proteína Quinase 6 Ativada por Mitógeno/genética , Modelos Neurológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Septinas/química , Septinas/genética , Transfecção
20.
Dermatol Surg ; 38(7 Pt 1): 1033-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404322

RESUMO

BACKGROUND AND OBJECTIVES: Inflammasomes that activate caspase-1 govern the innate immune inflammatory response. Whether hair loss associated with androgenetic alopecia (AGA) involves caspase-1 activation is not known. METHODS: Immunohistochemical staining for caspase-1 was performed on scalp tissue sections, and protein lysates were analyzed from individuals with AGA (no treatment), and individuals with AGA taking finasteride with apparent hair growth, individuals with AGA taking finasteride without noted hair growth, and normal controls. In vitro studies of human keratinocytes were conducted to establish effects of finasteride, dihydrotestosterone (DHT), and testosterone on caspase-1 levels using immunoblot analysis. RESULTS: Caspase-1 is expressed in normal human adult epidermal keratinocytes. Caspase-1 expression is greater in men with AGA. In contrast, in men taking finasteride, caspase-1 levels were lower and were similar to those in normal controls. In vitro studies showed that keratinocytes treated with finasteride in combination with testosterone or DHT resulted in a significant decrease in caspase-1 expression. CONCLUSION: In vivo and in vitro finasteride treatment resulted in lower caspase-1 expression, supporting the idea that androgens influence innate immunity involved in the hair cycle in AGA. These findings may provide a basis for development of novel treatments for inflammatory skin and hair diseases.


Assuntos
Alopecia/metabolismo , Caspase 1/metabolismo , Queratinócitos/metabolismo , Couro Cabeludo/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Inibidores de 5-alfa Redutase/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Alopecia/tratamento farmacológico , Alopecia/imunologia , Androgênios/farmacologia , Caspase 1/efeitos dos fármacos , Caspase 1/imunologia , Células Cultivadas , Di-Hidrotestosterona/farmacologia , Finasterida/farmacologia , Finasterida/uso terapêutico , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Humanos , Imunidade Inata , Imuno-Histoquímica , Inflamassomos , Queratinócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...