Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Matrix Biol ; 130: 36-46, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723870

RESUMO

Cellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.


Assuntos
Adipogenia , Fator de Crescimento do Tecido Conjuntivo , Lisofosfolipídeos , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Camundongos , Lisofosfolipídeos/metabolismo , Comunicação Celular , Transdução de Sinais , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Regulação da Expressão Gênica , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Diferenciação Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Humanos , Citoesqueleto de Actina/metabolismo
2.
Matrix Biol ; 119: 57-81, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137584

RESUMO

Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.


Assuntos
Via de Sinalização Hippo , Lisofosfolipídeos , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Músculo Esquelético/metabolismo , Fibrose
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982659

RESUMO

Loss of motoneuron innervation (denervation) is a hallmark of neurodegeneration and aging of the skeletal muscle. Denervation induces fibrosis, a response attributed to the activation and expansion of resident fibro/adipogenic progenitors (FAPs), i.e., multipotent stromal cells with myofibroblast potential. Using in vivo and in silico approaches, we revealed FAPs as a novel cell population that activates the transcriptional coregulators YAP/TAZ in response to skeletal muscle denervation. Here, we found that denervation induces the expression and transcriptional activity of YAP/TAZ in whole muscle lysates. Using the PdgfraH2B:EGFP/+ transgenic reporter mice to trace FAPs, we demonstrated that denervation leads to increased YAP expression that accumulates within FAPs nuclei. Consistently, re-analysis of published single-nucleus RNA sequencing (snRNA-seq) data indicates that FAPs from denervated muscles have a higher YAP/TAZ signature level than control FAPs. Thus, our work provides the foundations to address the functional role of YAP/TAZ in FAPs in a neurogenic pathological context, which could be applied to develop novel therapeutic approaches for the treatment of muscle disorders triggered by motoneuron degeneration.


Assuntos
Adipogenia , Músculo Esquelético , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular/fisiologia , Denervação , Camundongos Transgênicos , Músculo Esquelético/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675170

RESUMO

Binge Drinking (BD) corresponds to episodes of ingestion of large amounts of ethanol in a short time, typically ≤2 h. BD occurs across all populations, but young and sports-related people are especially vulnerable. However, the short- and long-term effects of episodic BD on skeletal muscle function have been poorly explored. Young rats were randomized into two groups: control and episodic Binge-Like ethanol protocol (BEP) (ethanol 3 g/kg IP, 4 episodes of 2-days ON-2-days OFF paradigm). Muscle function was evaluated two weeks after the last BEP episode. We found that rats exposed to BEP presented decreased muscle strength and increased fatigability, compared with control animals. Furthermore, we observed that skeletal muscle from rats exposed to BEP presented muscle atrophy, evidenced by reduced fiber size and increased expression of atrophic genes. We also observed that BEP induced fibrotic and inflammation markers, accompanied by mislocalization of nNOSµ and high levels of protein nitration. Our findings suggest that episodic binge-like ethanol exposure alters contractile capacity and increases fatigue by mechanisms involving atrophy, fibrosis, and inflammation, which remain for at least two weeks after ethanol clearance. These pathological features are common to several neuromuscular diseases and might affect muscle performance and health in the long term.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Etanol , Ratos , Animais , Etanol/efeitos adversos , Etanol/metabolismo , Músculo Esquelético/metabolismo , Inflamação/metabolismo , Atrofia Muscular/metabolismo , Força Muscular , Fibrose , Consumo Excessivo de Bebidas Alcoólicas/metabolismo
5.
Matrix Biol ; 109: 121-139, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385768

RESUMO

Several common chronic diseases, muscular dystrophies (MDs), and aging lead to progressive fibrous connective tissue (fibrosis) accumulation in skeletal muscle. Cumulative past evidence points to the role of signaling lipids such as lysophosphatidic acid (LPA) and its receptors (LPARs) in different models of fibrosis. However, the potential contribution of these molecules to the fibrotic process in skeletal muscle has not been explored. Here, we show the expression of ATX/LPA/LPARs axis components in skeletal muscle, which suggests their potential relevance for the biology of this tissue. We investigated if the skeletal muscle responds to the stimulus of intramuscular (IM) LPA injections, finding an early induction of the pro-fibrotic factor connective tissue growth factor/Cellular Communication Network factor 2 (CCN2) and extracellular matrix (ECM) proteins. Also, we found that LPA induces an increase in the number of fibro/adipogenic progenitors (FAPs), which are the primary cellular source of myofibroblasts. These effects were for the most part prevented by the inhibitor Ki16425, which inhibits the LPA receptors LPA1 and LPA3, as well as in the LPA1-KO mice.  We also evaluated the in vivo activation of extracellular signal-regulated kinases (ERK 1/2), AKT, c-Jun N-terminal kinase (JNK), and Yes-asocciated protein 1 (YAP) in response to LPA. Our results show that LPA induces ERK 1/2 phosphorylation in WT muscle, but not in LPA1-KO mice. Treatment with the ERK 1/2 inhibitor U0126 prevented the induction of fibronectin in response to LPA, suggesting that this pathway is involved in LPA-induced fibrosis. Altogether, these results demonstrate that ATX/LPA/LPARs constitute a pro-fibrotic axis and suggest a possible role in muscular diseases.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Animais , Proteínas da Matriz Extracelular , Fibrose , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Camundongos , Músculo Esquelético/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
6.
Matrix Biol Plus ; 11: 100059, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34435178

RESUMO

Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.

7.
Int J Mol Sci ; 22(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063397

RESUMO

The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Músculo Esquelético/fisiologia , Peptídeos/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Cininas/metabolismo , Família Multigênica , Proteínas Musculares/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Regeneração , Sistema Renina-Angiotensina
8.
Cell Signal ; 84: 110036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971280

RESUMO

Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRß. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRß over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRß, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.


Assuntos
Desenvolvimento Muscular , Fosfatidilinositol 3-Quinases , Divisão Celular , Proliferação de Células/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
FASEB J ; 35(5): e21503, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811686

RESUMO

The muscle regeneration process requires a properly assembled extracellular matrix (ECM). Its homeostasis depends on the activity of different matrix-metalloproteinases (MMPs). The reversion-inducing-cysteine-rich protein with kazal motifs (RECK) is a membrane-anchored protein that negatively regulates the activity of different MMPs. However, the role of RECK in the process of skeletal muscle differentiation, regeneration, and fibrosis has not been elucidated. Here, we show that during skeletal muscle differentiation of C2C12 myoblasts and in satellite cells on isolated muscle fibers, RECK is transiently up regulated. C2C12 myoblasts with reduced RECK levels are more prone to enter the differentiation program, showing an accelerated differentiation process. Notch-1 signaling was reduced, while p38 and AKT signaling were augmented in myoblasts with decreased RECK levels. Overexpression of RECK restores the normal differentiation process but diminished the ability to form myotubes. Transient up-regulation of RECK occurs during skeletal muscle regeneration, which was accelerated in RECK-deficient mice (Reck±). RECK, MMPs and ECM proteins augmented in chronically damaged WT muscle, a model of muscle fibrosis. In this model, RECK ± mice showed diminished fibrosis compared to WT. These results strongly suggest that RECK is acting as a potential myogenic repressor during muscle formation and regeneration, emerging as a new player in these processes, and as a potential target to treat individuals with the muscle-wasting disease.


Assuntos
Diferenciação Celular , Matriz Extracelular/metabolismo , Fibrose/prevenção & controle , Proteínas Ligadas por GPI/antagonistas & inibidores , Desenvolvimento Muscular , Músculo Esquelético/citologia , Regeneração , Animais , Fibrose/metabolismo , Fibrose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Transdução de Sinais
10.
J Cell Commun Signal ; 15(3): 317-334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33689121

RESUMO

Muscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.

11.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302427

RESUMO

Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy.


Assuntos
Angiotensina I/farmacologia , Autofagia , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Catepsina L/metabolismo , Linhagem Celular , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
J Cell Sci ; 133(12)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32434871

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent progenitors essential for organogenesis, tissue homeostasis, regeneration and scar formation. Tissue injury upregulates transforming growth factor ß (TGF-ß) signaling, which modulates myofibroblast fate, extracellular matrix remodeling and fibrosis. However, the molecular determinants of MSC differentiation and survival remain poorly understood. During canonical Wnt signaling, T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors regulate development and stemness, but the mechanisms by which injury-induced cues modulate their expression remain underexplored. Here, we studied the cell type-specific gene expression of TCF/LEF transcription factors and, more specifically, we investigated whether damage-induced TGF-ß signaling impairs the expression and function of TCF7L2 (also known as TCF4), using several models of MSCs, including skeletal muscle fibro-adipogenic progenitors. We show that TCF/LEFs are differentially expressed and that TGF-ß reduces the expression of TCF7L2 in MSCs but not in myoblasts. We also found that the ubiquitin-proteasome system regulates TCF7L2 proteostasis and participates in TGF-ß-mediated TCF7L2 protein downregulation. Finally, we show that TGF-ß requires histone deacetylase activity to repress the expression of TCF7L2. Thus, our work reports a novel interplay between TGF-ß and canonical Wnt signaling cascades in PDGFRα+ fibroblasts and suggests that this mechanism could be targeted in tissue repair and regeneration.


Assuntos
Fator de Crescimento Transformador beta , Via de Sinalização Wnt , Regulação para Baixo , Fibroblastos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Fatores de Transcrição , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
J Cell Commun Signal ; 14(2): 147-158, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088838

RESUMO

Hypoxia refers to the decrease in oxygen tension in the tissues, and the central effector of the hypoxic response is the transcription factor Hypoxia-Inducible Factor α (HIF1-α). Transient hypoxia in acute events, such as exercising or regeneration after damage, play an important role in skeletal muscle physiology and homeostasis. However, sustained activation of hypoxic signaling is a feature of skeletal muscle injury and disease, which can be a consequence of chronic damage but can also increase the severity of the pathology and worsen its outcome. Here, we review evidence that supports the idea that hypoxia and HIF-1α can contribute to the establishment of fibrosis in skeletal muscle through its crosstalk with other profibrotic factors, such as Transforming growth factor ß (TGF-ß), the induction of profibrotic cytokines expression, as is the case of Connective Tissue Growth Factor (CTGF/CCN2), or being the target of the Renin-angiotensin system (RAS).

14.
Matrix Biol ; 87: 48-65, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31669521

RESUMO

Several skeletal muscle diseases are characterized by fibrosis, the excessive accumulation of extracellular matrix. Transforming growth factor-ß (TGF-ß) and connective tissue growth factor (CCN2/CTGF) are two profibrotic factors augmented in fibrotic skeletal muscle, together with signs of reduced vasculature that implies a decrease in oxygen supply. We observed that fibrotic muscles are characterized by the presence of positive nuclei for hypoxia-inducible factor-1α (HIF-1α), a key mediator of the hypoxia response. However, it is not clear how a hypoxic environment could contribute to the fibrotic phenotype in skeletal muscle. We evaluated the role of hypoxia and TGF-ß on CCN2 expression in vitro. Fibroblasts, myoblasts and differentiated myotubes were incubated with TGF-ß1 under hypoxic conditions. Hypoxia and TGF-ß1 induced CCN2 expression synergistically in myotubes but not in fibroblasts or undifferentiated muscle progenitors. This induction requires HIF-1α and the Smad-independent TGF-ß signaling pathway. We performed in vivo experiments using pharmacological stabilization of HIF-1α or hypoxia-induced via hindlimb ischemia together with intramuscular injections of TGF-ß1, and we found increased CCN2 expression. These observations suggest that hypoxic signaling together with TGF-ß signaling, which are both characteristics of a fibrotic skeletal muscle environment, induce the expression of CCN2 in skeletal muscle fibers and myotubes.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Esquelético/patologia , Fator de Crescimento Transformador beta1/administração & dosagem , Regulação para Cima , Animais , Diferenciação Celular , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Injeções Intramusculares , Isquemia/etiologia , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Células NIH 3T3 , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia
15.
J Cell Sci ; 132(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31434718

RESUMO

Fibro-adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to investigate the role of functional cross-talk between TGF-ß and PDGFRα signaling pathways in the fate of FAPs. Here, we show that the number of FAPs correlates with TGF-ß levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-ß signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts and in two related mesenchymal cell lines. Moreover, TGF-ß promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-ß impairs the expression of PDGFRα-dependent immediate early genes in a TGFBR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-ß-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-ß and PDGFRα signaling pathways that is involved in regulating the biology of FAPs and/or MSCs.This article has an associated First Person interview with the first author of the paper.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Tirfostinas/farmacologia
16.
Matrix Biol ; 82: 20-37, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30716392

RESUMO

Muscular fibrosis is caused by excessive accumulation of extracellular matrix (ECM) that replaces functional tissue, and it is a feature of several myopathies and neuropathies. Knowledge of the biology and regulation of pro-fibrotic factors is critical for the development of new therapeutic strategies. Upon unilateral sciatic nerve transection, we observed accumulation of ECM proteins such as collagen and fibronectin in the denervated hindlimb, together with increased levels of the profibrotic factors transforming growth factor type ß (TGF-ß) and connective tissue growth factor (CTGF/CCN2). In mice hemizygous for CTGF/CCN2 or in mice treated with a blocking antibody against CTGF/CCN2, we observed reduced accumulation of ECM proteins after denervation as compared to control mice, with no changes in fibro/adipogenic progenitors (FAPs), suggesting a direct role of CTGF/CCN2 on denervation-induced fibrosis. During time course experiments, we observed that ECM proteins and CTGF/CCN2 levels are increased early after denervation (2-4 days), while TGF-ß signaling shows a delayed kinetics of appearance (1-2 weeks). Furthermore, blockade of TGF-ß signaling does not decrease fibronectin or CTGF levels after 4 days of denervation. These results suggest that in our model CTGF/CCN2 is not up-regulated by canonical TGF-ß signaling early after denervation and that other factors are likely involved in the early fibrotic response following skeletal muscle denervation.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Benzamidas/farmacologia , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Dioxóis/farmacologia , Matriz Extracelular/metabolismo , Fibrose , Regulação da Expressão Gênica , Imidazóis/farmacologia , Masculino , Camundongos , Modelos Animais , Denervação Muscular , Músculo Esquelético/metabolismo , Quinoxalinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
17.
Mol Neurobiol ; 56(8): 5911-5916, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30689195

RESUMO

Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that belongs to the CCN family of proteins. Since its discovery, it has been linked to cellular processes such as cell proliferation, differentiation, adhesion, migration, and synthesis of extracellular matrix (ECM) components, among others. The pro-fibrotic role of CTGF/CCN2 has been well-studied in several pathologies characterized by the development of fibrosis. Reduction of CTGF/CCN2 levels in mdx mice, a murine model for Duchenne muscular dystrophy (DMD), decreases fibrosis and improves skeletal muscle phenotype and function. Recently, it has been shown that skeletal muscle of symptomatic hSOD1G93A mice, a model for Amyotrophic lateral sclerosis (ALS), shows up-regulation of CTGF/CCN2 accompanied by excessive deposition ECM molecules. Elevated levels of CTGF/CCN2 in spinal cord from ALS patients have been previously reported. However, there is no evidence regarding the role of CTGF/CCN2 in neurodegenerative diseases such as ALS, in which alterations in skeletal muscle seem to be the consequence of early pathological denervation. In this regard, the emerging evidence shows that CTGF/CCN2 also exerts non-fibrotic roles in the central nervous system (CNS), specifically impairing oligodendrocyte maturation and regeneration, and inhibiting axon myelination. Despite these striking observations, there is no evidence showing the role of CTGF/CCN2 in peripheral nerves. Therefore, even though more studies are needed to elucidate its precise role, CTGF/CCN2 is starting to emerge as a novel therapeutic target for the treatment of neurodegenerative diseases where demyelination and axonal degeneration occurs.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Músculo Esquelético/metabolismo , Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Modelos Biológicos
18.
Matrix Biol Plus ; 2: 100006, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543006

RESUMO

Extracellular matrix (ECM) gives structure, support, and is the niche for several cells found in skeletal muscle. ECM is mainly produced by muscle connective tissue (CT) fibroblasts during development and regeneration. Stromal fibroadipogenic progenitors (FAPs) are CT fibroblasts-like mesenchymal progenitors (MPs) with important roles in regeneration and degeneration. Chronic damage restrains the normal regenerative behavior of muscle fibroblasts/FAPs. Thus, the isolation and study of these mesenchymal progenitors are of crucial importance for understanding their behavior and biology. We investigated whether adult muscle CT fibroblasts (hereafter referred to as adherent fibroblasts [aFbs]) cultured via pre-plating strategy belong to a heterogeneous population of FAPs. By combining microscopy, western blot analyses, flow cytometry, and FACS we determined that aFbs isolated from skeletal muscle largely overlap with FAPs. In addition, we used the PDGFRαEGFP mice in order to corroborate our results with EGFP+ FAPs. Moreover, our strategy allows the isolation of activated EGFP+ FAPs from the murine DMD model PDGFRαEGFP; mdx and PDGFRαEGFP denervated mice. Here we report that 1 h 30 min of pre-plating strategy allows the isolation and culture of a highly enriched population of aFbs. These cells are phenotypically and biochemically a FAPs-like population of adherent cells. In addition, aFbs respond in the same fashion as FAPs to Nilotinib, an inducer of FAPs apoptosis. Moreover, flow cytometry characterization of these aFbs suggests that 85% of them express the MP marker PDGFRα, and isolation of aFbs from the PDGFRαEGFP mice suggests that 75% of them show high EGFP expression. Furthermore, TGF-ß1 induces aFbs proliferation, myofibroblast differentiation, and ECM production. We were also able to isolate activated aFbs from skeletal muscle of the DMD mice and from the PDGFRαEGFP mice 2-days after denervation. Our findings suggest that the in vitro pre-plating strategy allows the isolation and culture of a relatively pure aFbs population, which resembles FAPs in vitro.

19.
Hum Mol Genet ; 27(16): 2913-2926, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29860398

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset progressive neurodegenerative disease characterized by upper and lower motoneuron degeneration. A total of 20% of familial ALS (fALS) cases are explained by mutations in the superoxide dismutase 1 (SOD1) enzyme. Although more than 20 years have passed since the generation of the first ALS mouse model, the precise molecular mechanisms of ALS pathogenesis remain unknown. CTGF/CCN2 is a matricellular protein with associated fibrotic activity that is up-regulated in several chronic diseases. The inhibition of CTGF/CCN2 with the monoclonal neutralizing antibody FG-3019 reduces fibrosis in several chronic disorders including the mdx mice, a murine model for Duchenne muscular dystrophy (DMD). In this work, we show that there are increased levels of CTGF/CCN2 in skeletal muscle and spinal cord of hSOD1G93A mice. In this scenario, we show evidence that FG-3019 not only reduces fibrosis in skeletal muscle of hSOD1G93A mice, but also improves muscle and locomotor performance. We demonstrate that treatment with FG-3019 reduces muscle atrophy in hSOD1G93A mice. We also found improvement of neuromuscular junction (NMJ) innervation together with a reduction in myelin degeneration in the sciatic nerve, suggesting that alterations in nerve-muscle communication are partially improved in FG-3019-treated hSOD1G93A mice. Moreover, we also found that CTGF/CCN2 is expressed in astrocytes and neurons, predominantly in dorsal areas of spinal cord from symptomatic hSOD1G93A mice. Together, these results reveal that CTGF/CCN2 might be a novel therapeutic target to ameliorate symptoms and improve the quality of life of ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fator de Crescimento do Tecido Conjuntivo/genética , Distrofia Muscular de Duchenne/tratamento farmacológico , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia
20.
Skelet Muscle ; 8(1): 5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463296

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are effective therapies with demonstrated antineoplastic activity. Nilotinib is a second-generation FDA-approved TKI designed to overcome Imatinib resistance and intolerance in patients with chronic myelogenous leukemia (CML). Interestingly, TKIs have also been shown to be an efficient treatment for several non-malignant disorders such fibrotic diseases, including those affecting skeletal muscles. METHODS: We investigated the role of Nilotinib on skeletal myogenesis using the well-established C2C12 myoblast cell line. We evaluated the impact of Nilotinib during the time course of skeletal myogenesis. We compared the effect of Nilotinib with the well-known p38 MAPK inhibitor SB203580. MEK1/2 UO126 and PI3K/AKT LY294002 inhibitors were used to identify the signaling pathways involved in Nilotinib-related effects on myoblast. Adult primary myoblasts were also used to corroborate the inhibition of myoblasts fusion and myotube-nuclei positioning by Nilotinib. RESULTS: We found that Nilotinib inhibited myogenic differentiation, reducing the number of myogenin-positive myoblasts and decreasing myogenin and MyoD expression. Furthermore, Nilotinib-mediated anti-myogenic effects impair myotube formation, myosin heavy chain expression, and compromise myotube-nuclei positioning. In addition, we found that p38 MAPK is a new off-target protein of Nilotinib, which causes inhibition of p38 phosphorylation in a similar manner as the well-characterized p38 inhibitor SB203580. Nilotinib induces the activation of ERK1/2 and AKT on myoblasts but not in myotubes. We also found that Nilotinib stimulates myoblast proliferation, a process dependent on ERK1/2 and AKT activation. CONCLUSIONS: Our findings suggest that Nilotinib may have important negative effects on muscle homeostasis, inhibiting myogenic differentiation but stimulating myoblasts proliferation. Additionally, we found that Nilotinib stimulates the activation of ERK1/2 and AKT. On the other hand, we suggest that p38 MAPK is a new off-target of Nilotinib. Thus, there is a necessity for future studies to investigate the long-term effects of TKIs on skeletal muscle homeostasis, along with potential detrimental effects in cell differentiation and proliferation in patients receiving TKI therapies.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/enzimologia , Miogenina/biossíntese , Miogenina/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteostase/efeitos dos fármacos , Proteostase/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...