Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11408-11417, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097586

RESUMO

Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Glutationa Redutase/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estresse Oxidativo/fisiologia , Tiorredoxina Redutase 1/metabolismo , Animais , Antioxidantes/metabolismo , Dano ao DNA/fisiologia , Progressão da Doença , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Metaboloma/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
2.
Hum Mol Genet ; 27(9): 1533-1544, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452352

RESUMO

Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.


Assuntos
Calsequestrina/metabolismo , Taquicardia Ventricular/metabolismo , Tamoxifeno/farmacologia , Animais , Cálcio/metabolismo , Calsequestrina/genética , Feminino , Frequência Cardíaca/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...