Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 15(5): 678-689, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28419718

RESUMO

Reactive Fe(III) minerals can influence methane (CH4 ) emissions by inhibiting microbial methanogenesis or by stimulating anaerobic CH4 oxidation. The balance between Fe(III) reduction, methanogenesis, and CH4 oxidation in ferruginous Archean and Paleoproterozoic oceans would have controlled CH4 fluxes to the atmosphere, thereby regulating the capacity for CH4 to warm the early Earth under the Faint Young Sun. We studied CH4 and Fe cycling in anoxic incubations of ferruginous sediment from the ancient ocean analogue Lake Matano, Indonesia, over three successive transfers (500 days in total). Iron reduction, methanogenesis, CH4 oxidation, and microbial taxonomy were monitored in treatments amended with ferrihydrite or goethite. After three dilutions, Fe(III) reduction persisted only in bottles with ferrihydrite. Enhanced CH4 production was observed in the presence of goethite, highlighting the potential for reactive Fe(III) oxides to inhibit methanogenesis. Supplementing the media with hydrogen, nickel and selenium did not stimulate methanogenesis. There was limited evidence for Fe(III)-dependent CH4 oxidation, although some incubations displayed CH4 -stimulated Fe(III) reduction. 16S rRNA profiles continuously changed over the course of enrichment, with ultimate dominance of unclassified members of the order Desulfuromonadales in all treatments. Microbial diversity decreased markedly over the course of incubation, with subtle differences between ferrihydrite and goethite amendments. These results suggest that Fe(III) oxide mineralogy and availability of electron donors could have led to spatial separation of Fe(III)-reducing and methanogenic microbial communities in ferruginous marine sediments, potentially explaining the persistence of CH4 as a greenhouse gas throughout the first half of Earth history.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Metano/biossíntese , Indonésia , Oxirredução , RNA Ribossômico 16S/análise
2.
Nature ; 395(6700): 365-7, 1998 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-9759725

RESUMO

The production of organic precursors to life depends critically on the form of the reactants. In particular, an environment dominated by N2 is far less efficient in synthesizing nitrogen-bearing organics than a reducing environment rich in ammonia. Relatively reducing lithospheric conditions on the early Earth have been presumed to favour the generation of an ammonia-rich atmosphere, but this hypothesis has not been studied experimentally. Here we demonstrate mineral-catalysed reduction of N2, NO2- and NO3- to ammonia at temperatures between 300 and 800 degrees C and pressures of 0.1-0.4 GPa-conditions typical of crustal and oceanic hydrothermal systems. We also show that only N2 is stable above 800 degrees C, thus precluding significant atmospheric ammonia formation during hot accretion. We conclude that mineral-catalysed N2 reduction might have provided a significant source of ammonia to the Hadean ocean. These results also suggest that, whereas nitrogen in the Earth's early atmosphere was present predominantly as N2, exchange with oceanic, hydrothermally derived ammonia could have provided a significant amount of the atmospheric ammonia necessary to resolve the early-faint-Sun paradox.


Assuntos
Nitrogênio/química , Origem da Vida , Amônia/química , Catálise , Planeta Terra , Evolução Planetária , Ferro/química , Oxirredução , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA