Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338789

RESUMO

Fish freshness consists of complex endogenous and exogenous processes; therefore, the use of a few parameters to unravel illicit practices could be insufficient. Moreover, the development of strategies for the identification of such practices based on additives known to prevent and/or delay fish spoilage is still limited. The paper deals with the identification of the effect played by a Cafodos solution on the conservation state of sea bass at both short-term (3 h) and long-term (24 h). Controls and treated samples were characterized by a multi-omic approach involving proteomics, lipidomics, metabolomics, and metagenomics. Different parts of the fish samples were studied (muscle, skin, eye, and gills) and sampled through a non-invasive procedure based on EVA strips functionalized by ionic exchange resins. Data fusion methods were then applied to build models able to discriminate between controls and treated samples and identify the possible markers of the applied treatment. The approach was effective in the identification of the effect played by Cafodos that proved to be different in the short- and long-term and complex, involving proteins, lipids, and small molecules to a different extent.


Assuntos
Bass , Animais , Multiômica
2.
Microbiol Spectr ; 10(6): e0207322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287008

RESUMO

Disease resistance in plants depends on a molecular dialogue with microbes that involves many known chemical effectors, but the time course of the interaction and the influence of the environment are largely unknown. The outcome of host-pathogen interactions is thought to reflect the offensive and defensive capabilities of both players. When plants interact with Pseudomonas syringae, several well-characterized virulence factors contribute to early bacterial pathogenicity, including the type III secretion system (T3SS), which must be activated by signals from the plant and environment to allow the secretion of virulence effectors. The manner in which these signals regulate T3SS activity is still unclear. Here, we strengthen the paradigm of the plant-pathogen molecular dialogue by addressing overlooked details concerning the timing of interactions, specifically the role of plant signals and temperature on the regulation of bacterial virulence during the first few hours of the interaction. Whole-genome expression profiling after 1 h revealed that the perception of plant signals from kiwifruit or tomato extracts anticipated T3SS expression in P. syringae pv. actinidiae compared to apoplast-like conditions, facilitating more efficient effector transport in planta, as revealed by the induction of a temperature-dependent hypersensitive response in the nonhost plant Arabidopsis thaliana Columbia-0 (Col-0). Our results show that in the arms race between plants and bacteria, the temperature-dependent timing of bacterial virulence versus the induction of plant defenses is probably one of the fundamental parameters governing the outcome of the interaction. IMPORTANCE Plant diseases-their occurrence and severity-result from the impact of three factors: the host, the pathogen, and the environmental conditions, interconnected in the disease triangle. Time was further included as a fourth factor accounting for plant disease, leading to a more realistic three-dimensional disease pyramid to represent the evolution of disease over time. However, this representation still considers time only as a parameter determining when and to what extent a disease will occur, at a scale from days to months. Here, we show that time is a factor regulating the arms race between plants and pathogens, at a scale from minutes to hours, and strictly depends on environmental factors. Thus, besides the arms possessed by pathogens and plants per se, the opportunity and the timing of arms mobilization make the difference in determining the outcome of an interaction and thus the occurrence of plant disease.


Assuntos
Pseudomonas syringae , Sistemas de Secreção Tipo III , Pseudomonas syringae/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura , Virulência , Doenças das Plantas/microbiologia
3.
J Chromatogr A ; 1678: 463352, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35896048

RESUMO

Post-translational modifications (PTMs) occur during or after protein biosynthesis and increase the functional diversity of proteome. They comprise phosphorylation, acetylation, methylation, glycosylation, ubiquitination, sumoylation (among many other modifications), and influence all aspects of cell biology. Mass-spectrometry (MS)-based proteomics is the most powerful approach for PTM analysis. Despite this, it is challenging due to low abundance and labile nature of many PTMs. Hence, enrichment of modified peptides is required for MS analysis. This review provides an overview of most common PTMs and a discussion of current enrichment methods for MS-based proteomics analysis. The traditional affinity strategies, including immunoenrichment, chromatography and protein pull-down, are outlined together with their strengths and shortcomings. Moreover, a special attention is paid to chemical enrichment strategies, such as capture by chemoselective probes, metabolic and chemoenzymatic labelling, which are discussed with an emphasis on their recent progress. Finally, the challenges and future trends in the field are discussed.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Acetilação , Espectrometria de Massas/métodos , Proteoma , Proteômica/métodos
4.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209002

RESUMO

Wheat allergens are responsible for symptoms in 60-70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21-27 kDa that were recognized by the pooled baker's IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.


Assuntos
Alérgenos/imunologia , Glucose 1-Desidrogenase/imunologia , Proteínas de Choque Térmico Pequenas/imunologia , Proteínas de Plantas/imunologia , Desidrogenase do Álcool de Açúcar/imunologia , Hipersensibilidade a Trigo/imunologia , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Testes de Função Respiratória , Testes Cutâneos , Espectrometria de Massas em Tandem , Hipersensibilidade a Trigo/diagnóstico
5.
Biomolecules ; 12(2)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35204804

RESUMO

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/metabolismo , Proteômica , Secretoma , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
6.
J Agric Food Chem ; 69(38): 11512-11522, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523341

RESUMO

To study proteomic changes involved in tenderization of Longissimus dorsi, Charolais heifers and bulls muscles were sampled after early and long aging (12 or 26 days). Sensory evaluation and instrumental tenderness measurement were performed. Proteins were analyzed by gel-free proteomics. By pattern recognition (principal component analysis and Kohonen's self-organizing maps) and classification (partial least squares-discriminant analysis) tools, 58 and 86 dysregulated proteins were detected after 12 and 26 days of aging, respectively. Tenderness was positively correlated mainly with metabolic enzymes (PYGM, PGAM2, TPI1, PGK1, and PFKM) and negatively with keratins. Downregulation in hemoglobin subunits and carbonic anhydrase 3 levels was relevant after 12 days of aging, while mimecan and collagen chains levels were reduced after 26 days of aging. Bioinformatics indicated that aging involves a prevalence of metabolic pathways after late and long periods. These findings provide a deeper understanding of changes involved in aging of beef and indicate a powerful method for future proteomics studies.


Assuntos
Proteoma , Proteômica , Animais , Bovinos , Feminino , Masculino , Espectrometria de Massas , Carne/análise , Análise Multivariada , Músculo Esquelético , Redes Neurais de Computação
7.
Methods Mol Biol ; 2361: 213-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236664

RESUMO

Secreted proteins play important roles in several biological processes such as growth, proliferation differentiation, cell-cell communication, migration, and apoptosis; moreover, these extracellular molecules mediate homeostasis by influencing the cross-talking within the surrounding tissues. Currently, the research area of cell secretome has become of great interest since the profiling of secreted proteins could be essential for the biomarker discovery and for the identification of new therapeutic strategies. Several bioinformatic platforms have been implemented for the in silico characterization of secreted proteins: this chapter describes a typical workflow for the analysis of proteins secreted by cultured cells through bioinformatic approaches. Central issue is related to discrimination between proteins secreted by classical and non-classical pathways. Therefore, specific prediction tools for the classification of candidate secreted proteins are here presented.


Assuntos
Vesículas Extracelulares , Biologia Computacional , Bases de Dados Factuais , Vesículas Extracelulares/metabolismo , Proteínas , Proteoma/metabolismo , Secretoma
8.
Sci Rep ; 11(1): 13297, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168259

RESUMO

Pancreatic cancer stem cells (PCSCs) play a key role in the aggressiveness of pancreatic ductal adenocarcinomas (PDAC); however, little is known about their signaling and metabolic pathways. Here we show that PCSCs have specific and common proteome and lipidome modulations. PCSCs displayed downregulation of lactate dehydrogenase A chain, and upregulation of trifunctional enzyme subunit alpha. The upregulated proteins of PCSCs are mainly involved in fatty acid (FA) elongation and biosynthesis of unsaturated FAs. Accordingly, lipidomics reveals an increase in long and very long-chain unsaturated FAs, which are products of fatty acid elongase-5 predicted as a key gene. Moreover, lipidomics showed the induction in PCSCs of molecular species of cardiolipin with mixed incorporation of 16:0, 18:1, and 18:2 acyl chains. Our data indicate a crucial role of FA elongation and alteration in cardiolipin acyl chain composition in PCSCs, representing attractive therapeutic targets in PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Cardiolipinas/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipidômica , Proteômica , Regulação para Cima
9.
Sci Rep ; 10(1): 11572, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665600

RESUMO

The topical application of lactic acid bacteria (LAB) is recognized as a useful approach to improve skin health. This work aims to characterize by a multidisciplinary approach, the wound healing, anti-inflammatory, anti-pathogens and proteomic effects of six LAB lysates, belonging to the genus Lactobacillus. Our results demonstrated that the lysates of tested LAB stimulated the proliferation of keratinocytes, and that L. plantarum SGL 07 and L. salivarius SGL 19 accelerated the re-epithelization by inducing keratinocyte migration. The bacterial lysates also reduced the secretion of specific pro-inflammatory mediators from keratinocytes. Furthermore, viable L. salivarius SGL 19 and L. fermentum SGL 10 had anti-pathogenic effects against S. aureus and S. pyogenes, while L. brevis SGL 12 and L. paracasei SGL 04 inhibited S. aureus and S. pyogenes, respectively. The tested lactobacilli lysates also induced specific proteome modulation of the exposed keratinocytes, involving dysregulation of proteins (such as interleukin enhancer-binding factor 2 and ATP-dependent RNA helicase) and pathways (such as cytokine, NF-kB, Hedgehog, and RUNX signaling) associated with their specific wound healing and anti-inflammatory effects. This study indicates the different potential of selected lactobacilli, suggesting that they may be successfully used in the future together with conventional therapies to bring relief from skin disorders.


Assuntos
Queratinócitos/microbiologia , Lactobacillales/metabolismo , Proteômica , Cicatrização , Anti-Inflamatórios/metabolismo , Humanos , Queratinócitos/metabolismo , Lactobacillales/genética , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , NF-kappa B/genética , Transdução de Sinais/genética , Pele/metabolismo , Pele/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
10.
Cells ; 9(7)2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605166

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is typically characterized by high chemoresistance and metastatic spread, features mainly attributable to cancer stem cells (CSCs). It is of central interest the characterization of CSCs and, in particular, the study of their metabolic features in order to selectively identify their peculiarities for an efficient therapeutic approach. In this study, CSCs have been obtained by culturing different PDAC cell lines with a specific growth medium. Cells were characterized for the typical stem/mesenchymal properties at short-, medium-, and long-term culture. Metabolomics, proteomics, analysis of oxygen consumption rate in live cells, and the effect of the inhibition of lactate transporter on cell proliferation have been performed to delineate the metabolism of CSCs. We show that gradually de-differentiated pancreatic cancer cells progressively increase the expression of both stem and epithelial-to-mesenchymal transition markers, shift their metabolism from a glycolytic to an oxidative one, and lastly gain a quiescent state. These quiescent stem cells are characterized by high chemo-resistance, clonogenic ability, and metastatic potential. Re-differentiation reverts these features, re-activating their proliferative capacity and glycolytic metabolism, which generally correlates with high aggressiveness. These observations add an important piece of knowledge to the comprehension of the biology of CSCs, whose metabolic plasticity could be exploited for the generation of promising and selective therapeutic approaches for PDAC patients.


Assuntos
Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Glicólise/fisiologia , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Consumo de Oxigênio/fisiologia , Peixe-Zebra
11.
Biomolecules ; 10(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526853

RESUMO

The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Mutação , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
12.
Int J Mol Sci ; 21(6)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197394

RESUMO

: Background: Cellulite is a condition in which the skin has a dimpled lumpy appearance. The main causes of cellulite development, studied until now, comprehends modified sensitivity to estrogens, the damage of microvasculature present among dermis and hypodermis. The differences of adipose tissue architecture between male and female might make female more susceptible to cellulite. Adipose tissue is seen to be deeply modified during cellulite development. Our study tried to understand the overall features within and surrounding cellulite to apply the best therapeutic approach. METHODS: Samples of gluteal femoral area were collected from cadavers and women who had undergone surgical treatment to remove orange peel characteristics on the skin. Samples from cadavers were employed for an accurate study of cellulite using magnetic resonance imaging at 7 Tesla and for light microscopy. Specimens from patients were employed for the proteomic analysis, which was performed using high resolution mass spectroscopy (MS). Stromal vascular fraction (SVF) was obtained from the samples, which was studied using MS and flow cytometry. RESULTS: light and electron microscopy of the cellulite affected area showed a morphology completely different from the other usual adipose depots. In cellulite affected tissues, sweat glands associated with adipocytes were found. In particular, there were vesicles in the extracellular matrix, indicating a crosstalk between the two different components. Proteomic analysis showed that adipose tissue affected by cellulite is characterized by high degree of oxidative stress and by remodeling phenomena. CONCLUSIONS: The novel aspects of this study are the peculiar morphology of adipose tissue affected by cellulite, which could influence the surgical procedures finalized to the reduction of dimpling, based on the collagen fibers cutting. The second novel aspect is the role played by the mesenchymal stem cells isolated from stromal vascular fraction of adipose tissue affected by cellulite.


Assuntos
Celulite , Derme , Espectrometria de Massas , Proteômica , Gordura Subcutânea , Adulto , Celulite/metabolismo , Celulite/patologia , Derme/metabolismo , Derme/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/metabolismo , Gordura Subcutânea/ultraestrutura
14.
Cells ; 8(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540100

RESUMO

Stem cell therapy represents a promising approach in the treatment of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). The beneficial effect of stem cells is exerted by paracrine mediators, as exosomes, suggesting a possible potential use of these extracellular vesicles as non-cell based therapy. We demonstrated that exosomes isolated from adipose stem cells (ASC) display a neuroprotective role in an in vitro model of ALS. Moreover, the internalization of ASC-exosomes by the cells was shown and the molecules and the mechanisms by which exosomes could exert their beneficial effect were addressed. We performed for the first time a comprehensive proteomic analysis of exosomes derived from murine ASC. We identified a total of 189 proteins and the shotgun proteomics analysis revealed that the exosomal proteins are mainly involved in cell adhesion and negative regulation of the apoptotic process. We correlated the protein content to the anti-apoptotic effect of exosomes observing a downregulation of pro-apoptotic proteins Bax and cleaved caspase-3 and upregulation of anti-apoptotic protein Bcl-2 α, in an in vitro model of ALS after cell treatment with exosomes. Overall, this study shows the neuroprotective effect of ASC-exosomes after their internalization and their global protein profile, that could be useful to understand how exosomes act, demonstrating that they can be employed as therapy in neurodegenerative diseases.


Assuntos
Adipócitos/metabolismo , Apoptose , Exossomos/metabolismo , Modelos Biológicos , Proteômica , Células-Tronco/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/metabolismo
15.
Expert Rev Proteomics ; 16(9): 733-747, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31398064

RESUMO

Introduction: Discovery proteomics for cancer research generates complex datasets of diagnostic, prognostic, and therapeutic significance in human cancer. With the advent of high-resolution mass spectrometers, able to identify thousands of proteins in complex biological samples, only the application of bioinformatics can lead to the interpretation of data which can be relevant for cancer research. Areas covered: Here, we give an overview of the current bioinformatic tools used in cancer proteomics. Moreover, we describe their applications in cancer proteomics studies of cell lines, serum, and tissues, highlighting recent results and critically evaluating their outcomes. Expert opinion: The use of bioinformatic tools is a fundamental step in order to manage the large amount of proteins (from hundreds to thousands) that can be identified and quantified in a cancer biological samples by proteomics. To handle this challenge and obtain useful data for translational medicine, it is important the combined use of different bioinformatic tools. Moreover, a particular attention to the global experimental design, and the integration of multidisciplinary skills are essential for best setting of tool parameters and best interpretation of bioinformatics output.


Assuntos
Biologia Computacional , Neoplasias/genética , Proteínas/genética , Humanos , Espectrometria de Massas , Neoplasias/patologia , Proteômica/tendências , Software
16.
J Am Soc Mass Spectrom ; 30(9): 1690-1699, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31309410

RESUMO

Despite some studies revealed that kefir acts on different cancers, such as colorectal cancer, the proteomic changes that occur in the colon cancer cells remain to be explored. In this study, the proteomic analysis was combined with determination of kefir characteristics (e.g., adhesion capacity, gastrointestinal and antibiotic resistances), in order to confirm its use as a probiotic. Therefore, a label-free strategy based on SWATH-MS was applied to investigate the proteomic profile of HT-29 cells after exposure for 24 h to a specific strain of Lactobacillus kefiri named SGL 13. We identified a total of 60 differentially expressed proteins in HT-29 cells, among which most are located into the extracellular exosome, playing important/crucial roles in translation and cell adhesion, as indicated by the enrichment analysis. The eIF2 and retinoid X receptor activation pathways appeared to be correlated with the anti-tumoral effect of SGL 13. Immunoblot analysis showed an increase in Bax and a decrease in caspase 3 and mutant p53, and ELISA assay revealed inhibition of IL-8 secretion from HT-29 cells stimulated with LPS upon SGL 13 treatment, suggesting pro-apoptotic and anti-inflammatory properties of kefir. In conclusion, the results of this study, the first of its kind using co-culture of kefir and colon cancer cells, demonstrate that L. kefiri SGL 13 possesses probiotic potency and contribute to elucidate the molecular mechanisms involved in the L. kefiri-colon cancer cell interactions.


Assuntos
Células HT29 , Lactobacillus , Espectrometria de Massas/métodos , Probióticos , Proteoma/análise , Aderência Bacteriana , Sobrevivência Celular , Farmacorresistência Bacteriana , Humanos , Kefir/microbiologia , Lactobacillus/química , Lactobacillus/efeitos dos fármacos , Lactobacillus/fisiologia , Testes de Sensibilidade Microbiana , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluxo de Trabalho
17.
Sci Rep ; 9(1): 8052, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142788

RESUMO

Runx2 is a transcription factor involved in melanoma cell migration and proliferation. Here, we extended the analysis of Runt domain of Runx2 in melanoma cells to deepen understanding of the underlying mechanisms. By the CRISPR/Cas9 system we generated the Runt KO melanoma cells 3G8. Interestingly, the proteome analysis showed a specific protein signature of 3G8 cells related to apoptosis and migration, and pointed out the involvement of Runt domain in the neoangiogenesis process. Among the proteins implicated in angiogenesis we identified fatty acid synthase, chloride intracellular channel protein-4, heat shock protein beta-1, Rho guanine nucleotide exchange factor 1, D-3-phosphoglycerate dehydrogenase, myosin-1c and caveolin-1. Upon querying the TCGA provisional database for melanoma, the genes related to these proteins were found altered in 51.36% of total patients. In addition, VEGF gene expression was reduced in 3G8 as compared to A375 cells; and HUVEC co-cultured with 3G8 cells expressed lower levels of CD105 and CD31 neoangiogenetic markers. Furthermore, the tube formation assay revealed down-regulation of capillary-like structures in HUVEC co-cultured with 3G8 in comparison to those with A375 cells. These findings provide new insight into Runx2 molecular details which can be crucial to possibly propose it as an oncotarget of melanoma.


Assuntos
Biomarcadores Tumorais/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Neovascularização Patológica/genética , Neoplasias Cutâneas/genética , Apoptose/genética , Biomarcadores Tumorais/análise , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Biologia Computacional , Conjuntos de Dados como Assunto , Endoglina/análise , Endoglina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanócitos , Melanoma/irrigação sanguínea , Melanoma/patologia , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Cultura Primária de Células , Domínios Proteicos/genética , Proteômica , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genética
18.
Front Immunol ; 10: 446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915084

RESUMO

Mesenchymal stromal cells (MSCs) are adult, multipotent cells of mesodermal origin representing the progenitors of all stromal tissues. MSCs possess significant and broad immunomodulatory functions affecting both adaptive and innate immune responses once MSCs are primed by the inflammatory microenvironment. Recently, the role of extracellular vesicles (EVs) in mediating the therapeutic effects of MSCs has been recognized. Nevertheless, the molecular mechanisms responsible for the immunomodulatory properties of MSC-derived EVs (MSC-EVs) are still poorly characterized. Therefore, we carried out a molecular characterization of MSC-EV content by high-throughput approaches. We analyzed miRNA and protein expression profile in cellular and vesicular compartments both in normal and inflammatory conditions. We found several proteins and miRNAs involved in immunological processes, such as MOES, LG3BP, PTX3, and S10A6 proteins, miR-155-5p, and miR-497-5p. Different in silico approaches were also performed to correlate miRNA and protein expression profile and then to evaluate the putative molecules or pathways involved in immunoregulatory properties mediated by MSC-EVs. PI3K-AKT signaling pathway and the regulation of actin cytoskeleton were identified and functionally validated in vitro as key mediators of MSC/B cell communication mediated by MSC-EVs. In conclusion, we identified different molecules and pathways responsible for immunoregulatory properties mediated by MSC-EVs, thus identifying novel therapeutic targets as safer and more useful alternatives to cell or EV-based therapeutic approaches.


Assuntos
Citoesqueleto de Actina/metabolismo , Linfócitos B/imunologia , Vesículas Extracelulares/metabolismo , Imunomodulação/imunologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
J Proteomics ; 195: 138-149, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30391485

RESUMO

The diagnosis and management of Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is still challenging. There is no definitive gold standard diagnostic test, which is made on patient history and with endoscopic and histological findings. This study analyzed serum proteins and fatty acids using mass spectrometry-based techniques. Quantitation of serum proteins was performed by depleting 14 high-abundance proteins, followed by tryptic digestion and LC-MS analysis, while fatty acids were analyzed using GC-MS. Bioinformatic tools were used to identify several new potential biomarkers for an early and non-invasive diagnosis of IBD, and to differentiate CD from UC. Moreover, the diagnostic power of the MS-identified biomarkers was also corroborated by Western Blot and ELISA assays. Hence, we identified the biological functions and pathways involved in the various subsets of IBD. Coagulation, fibrinolysis and acute phase response processes were found to be strongly involved in the condition. The involvement of several fatty acids, such as anti-inflammatory mediators, was also identified. Finally, proteomic and lipidomic data were integrated by using combinatorial and multivariate analyses to discover new combined biomarkers and to study the molecular pathways involved in IBD.


Assuntos
Proteínas Sanguíneas/metabolismo , Ácidos Graxos/sangue , Doenças Inflamatórias Intestinais/sangue , Adulto , Idoso , Biomarcadores/sangue , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
20.
Cells ; 7(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463392

RESUMO

The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...