Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cardiovasc Res ; 119(1): 155-166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35238350

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease of the arteries leading to the formation of atheromatous plaques. Human mesenchymal stem cells (hMSCs) are recruited from the circulation into plaques where in response to their environment they adopt a phenotype with immunomodulatory properties. However, the mechanisms underlying hMSC function in these processes are unclear. Recently, we described that miRNA let-7f controls hMSC invasion guided by inflammatory cytokines and chemokines. Here, we investigated the role of let-7f in hMSC tropism to human atheromas and the effects of the plaque microenvironment on cell fate and release of soluble factors. METHODS AND RESULTS: Incubation of hMSCs with LL-37, an antimicrobial peptide abundantly found in plaques, increased biosynthesis of let-7f and N-formyl peptide receptor 2 (FPR2), enabling chemotactic invasion of the cells towards LL-37, as determined by qRT-PCR, flow cytometry, and cell invasion assay analysis. In an Apoe-/- mouse model of atherosclerosis, circulating hMSCs preferentially adhered to athero-prone endothelium. This property was facilitated by elevated levels of let-7f in the hMSCs, as assayed by ex vivo artery perfusion and two-photon laser scanning microscopy. Exposure of hMSCs to homogenized human atheromatous plaque material considerably induced the production of various cytokines, chemokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinases, as studied by PCR array and western blot analysis. Moreover, exposure to human plaque extracts elicited differentiation of hMSCs into cells of the myogenic lineage, suggesting a potentially plaque-stabilizing effect. CONCLUSIONS: Our findings indicate that let-7f promotes hMSC tropism towards atheromas through the LL-37/FPR2 axis and demonstrate that hMSCs upon contact with human plaque environment develop a potentially athero-protective signature impacting the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Células-Tronco Mesenquimais , MicroRNAs , Placa Aterosclerótica , Camundongos , Animais , Humanos , MicroRNAs/genética , Aterosclerose/genética , Citocinas , Fatores Imunológicos
2.
Blood ; 139(17): 2691-2705, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35313337

RESUMO

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Assuntos
Plaquetas , Trombose , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Plaquetas/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo
3.
Front Cardiovasc Med ; 8: 749022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631841

RESUMO

Background: Bruton tyrosine kinase inhibitors (BTKi) are used in B-cell malignancies and in development against various autoimmune diseases. Since Btk is also involved in specific pathways of platelet activation, BTKi might be considered to target platelet GPVI/GPIb-mediated atherothrombosis and platelet FcγRIIA-dependent immune disorders. However, BTKi treatment of patients with B-cell malignancies is frequently associated with mild bleeding events caused possibly by off-target inhibition of Tec. Here, we compared the platelet effects of two novel BTKi that exhibit a high (remibrutinib) or low (rilzabrutinib) selectivity for Btk over Tec. Methods and Results: Remibrutinib and rilzabrutinib were pre-incubated with anticoagulated blood. Platelet aggregation and in vitro bleeding time (closure time) were studied by multiple electrode aggregometry (MEA) and platelet-function analyzer-200 (PFA-200), respectively. Both BTKi inhibited atherosclerotic plaque-stimulated GPVI-mediated platelet aggregation, remibrutinib being more potent (IC50 = 0.03 µM) than rilzabrutinib (IC50 = 0.16 µM). Concentrations of remibrutinib (0.1 µM) and rilzabrutinib (0.5 µM), >80% inhibitory for plaque-induced aggregation, also significantly suppressed (>90%) the Btk-dependent pathways of platelet aggregation upon GPVI, von Willebrand factor/GPIb and FcγRIIA activation stimulated by low collagen concentrations, ristocetin and antibody cross-linking, respectively. Both BTKi did not inhibit aggregation stimulated by ADP, TRAP-6 or arachidonic acid. Remibrutinib (0.1 µM) only slightly prolonged closure time and significantly less than rilzabrutinib (0.5 µM). Conclusion: Remibrutinib and rilzabrutinib inhibit Btk-dependent pathways of platelet aggregation upon GPVI, VWF/GPIb, and FcγRIIA activation. Remibrutinib being more potent and showing a better profile of inhibition of Btk-dependent platelet activation vs. hemostatic impairment than rilzabrutinib may be considered for further development as an antiplatelet drug.

5.
Circ Res ; 126(4): 486-500, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31859592

RESUMO

RATIONALE: A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. OBJECTIVE: In this study, we hypothesized that rivaroxaban's antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. METHODS AND RESULTS: In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban's antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban's anticoagulatory capacity. CONCLUSIONS: Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.


Assuntos
Artérias/metabolismo , Plaquetas/efeitos dos fármacos , Fator Xa/farmacologia , Receptor PAR-1/agonistas , Rivaroxabana/farmacologia , Trombose/prevenção & controle , Animais , Artérias/patologia , Plaquetas/metabolismo , Inibidores do Fator Xa/farmacologia , Fibrinolíticos/administração & dosagem , Fibrinolíticos/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Receptor PAR-1/metabolismo , Rivaroxabana/administração & dosagem , Trombose/metabolismo
6.
Dtsch Arztebl Int ; 115(17): 295, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29789107
7.
Blood ; 131(24): 2605-2616, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29559479

RESUMO

Interaction of von Willebrand factor (VWF) with platelet glycoprotein Ib (GPIb) and interaction of collagen with GPVI are essential for thrombus formation on ruptured or eroded atherosclerotic plaques (atherothrombosis). GPIb and GPVI signal through Bruton tyrosine kinase (Btk), which can be blocked irreversibly by oral application of ibrutinib, an established therapy for chronic lymphocytic leukemia (CLL) with long-term safety. We found that ibrutinib and the novel Btk inhibitors acalabrutinib and ONO/GS-4059 block GPVI-dependent static platelet aggregation in blood exposed to human plaque homogenate and collagen but not to ADP or arachidonic acid. Moreover, Btk inhibitors prevented platelet thrombus formation on human atherosclerotic plaque homogenate and plaque tissue sections from arterially flowing blood, whereas integrin α2ß1 and VWF-dependent platelet adhesion to collagen, which is important for physiologic hemostasis, was not affected. This plaque-selective platelet inhibition was also observed in CLL patients taking 450 mg of ibrutinib and in volunteers after much lower and intermittent dosing of the drug. We conclude that Btk inhibitors, by targeting GPIb and GPVI signal transduction, suppress platelet thrombus accretion from flowing blood on atherosclerotic plaque but spare hemostatic platelet function. Btk inhibitors hold promise as the first culprit lesion-focused oral antiplatelet drugs and are effective at low doses.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/uso terapêutico , Imidazóis/uso terapêutico , Placa Aterosclerótica/complicações , Inibidores da Agregação Plaquetária/uso terapêutico , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Trombose/etiologia , Trombose/prevenção & controle , Adenina/análogos & derivados , Administração Oral , Adulto , Tirosina Quinase da Agamaglobulinemia/metabolismo , Idoso , Benzamidas/administração & dosagem , Humanos , Imidazóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Piperidinas , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Pirazinas/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Trombose/metabolismo , Trombose/patologia
8.
Thromb Haemost ; 118(2): 351-361, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29378359

RESUMO

Platelet glycoprotein VI (GPVI) acts as a decisive collagen receptor in atherothrombosis. Besides collagen, injured atherosclerotic plaques expose tissue factor (TF) that triggers fibrin formation. Two recent studies reported that platelet GPVI also functions as fibrin receptor, which would importantly widen the mode of action of GPVI-targeted antithrombotic drugs. We studied the binding of two GPVI fusion proteins to fibrin under static and arterial flow conditions. Fibrin was prepared from purified fibrinogen or generated more physiologically from endogenous fibrinogen by coagulating plasma with thrombin. Fibrin formation was also triggered by exposing TF-coated surfaces or human atherosclerotic plaque slices to arterially flowing blood. By binding studies and advanced optical imaging, we found that recombinant dimeric GPVI-Fc fusion proteins with Fc from either IgG1 (GPVI-Fc1) or IgG2 (GPVI-Fc2) bound to collagen fibres, but neither to fibrin prepared from purified fibrinogen obtained from three suppliers, nor to physiological fibrin formed by thrombin in plasma or triggered by exposing TF or atherosclerotic plaque slices to arterially flowing blood. Our findings do not support a role of dimeric platelet GPVI as receptor for fibrin. This is important for the understanding of plaque-triggered platelet thrombus formation and is clinically relevant for future GPVI-targeting therapies with recombinant GPVI-Fc and anti-GPVI antibodies.


Assuntos
Colágeno/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Aterosclerose/metabolismo , Coagulação Sanguínea , Plaquetas/metabolismo , Humanos , Microscopia de Fluorescência , Placa Aterosclerótica/metabolismo , Ativação Plaquetária , Adesividade Plaquetária , Agregação Plaquetária , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes
9.
J Am Heart Assoc ; 6(8)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751543

RESUMO

BACKGROUND: GPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI-Fc (Revacept) binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI-Fc is a potent inhibitor of atherosclerotic plaque-induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We sought to increase the platelet inhibitory potential by fusing GPVI-Fc to the ectonucleotidase CD39 (fusion protein GPVI-CD39), which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion-directed dual antiplatelet therapy that is expected to lack systemic bleeding risks. METHODS AND RESULTS: GPVI-CD39 effectively stimulated local ADP degradation and, compared with GPVI-Fc alone, led to significantly increased inhibition of ADP-, collagen-, and human plaque-induced platelet aggregation in Multiplate aggregometry and plaque-induced platelet thrombus formation under arterial flow conditions. GPVI-CD39 did not increase bleeding time in an in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride-induced arterial thrombosis, GPVI-CD39 effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo. CONCLUSIONS: GPVI-CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or injury. It enhances GPVI-Fc-mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of acute atherothrombotic events, with a favorable risk-benefit ratio.


Assuntos
Antígenos CD/farmacologia , Apirase/farmacologia , Lesões das Artérias Carótidas/tratamento farmacológico , Fibrinolíticos/farmacologia , Glicoproteínas/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/farmacologia , Trombose/prevenção & controle , Animais , Antígenos CD/toxicidade , Apirase/farmacocinética , Apirase/toxicidade , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/sangue , Lesões das Artérias Carótidas/induzido quimicamente , Lesões das Artérias Carótidas/patologia , Cloretos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Compostos Férricos , Fibrinolíticos/farmacocinética , Fibrinolíticos/toxicidade , Glicoproteínas/farmacocinética , Glicoproteínas/toxicidade , Hemorragia/induzido quimicamente , Humanos , Fragmentos Fc das Imunoglobulinas/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/toxicidade , Glicoproteínas da Membrana de Plaquetas/farmacocinética , Glicoproteínas da Membrana de Plaquetas/toxicidade , Proteínas Recombinantes de Fusão/farmacologia , Trombose/sangue , Trombose/induzido quimicamente , Trombose/patologia
10.
Thromb Haemost ; 117(8): 1651-1659, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569920

RESUMO

The efficiency of current dual antiplatelet therapy might be further improved by its combination with a glycoprotein (GP) VI-targeting strategy without increasing bleeding. GPVI-Fc, a recombinant dimeric fusion protein binding to plaque collagen and concealing binding sites for platelet GPVI, acts as a lesion-focused antiplatelet drug, and does not increase bleeding in vivo. We investigated, whether GPVI-Fc added in vitro on top of acetylsalicylic acid (ASA), the P2Y12 antagonist ticagrelor, and the fibrinogen receptor antagonist abciximab alone or in combination would increase inhibition of platelet activation by atherosclerotic plaque. Under static conditions, GPVI-Fc inhibited plaque-induced platelet aggregation by 53 %, and increased platelet inhibition by ASA (51 %) and ticagrelor (64 %) to 66 % and 80 %, respectively. Under arterial flow, GPVI-Fc inhibited plaque-induced platelet aggregation by 57 %, and significantly increased platelet inhibition by ASA (28 %) and ticagrelor (47 %) to about 81 % each. The triple combination of GPVI-Fc, ASA and ticagrelor achieved almost complete inhibition of plaque-induced platelet aggregation (93 %). GPVI-Fc alone or in combination with ASA or ticagrelor did not increase closure time measured by the platelet function analyzer (PFA)-200. GPVI-Fc added on top of abciximab, a clinically used anti-fibrinogen receptor antibody which blocks platelet aggregation, strongly inhibited total (81 %) and stable (89 %) platelet adhesion. We conclude that GPVI-Fc added on top of single or dual antiplatelet therapy with ASA and/or a P2Y12 antagonist is likely to improve anti-atherothrombotic protection without increasing bleeding risk. In contrast, the strong inhibition of platelet adhesion by GPVI-Fc in combination with GPIIb/IIIa inhibitors could be harmful.


Assuntos
Adenosina/análogos & derivados , Anticorpos Monoclonais/farmacologia , Aspirina/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Glicoproteínas/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Placa Aterosclerótica , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Trombose/prevenção & controle , Abciximab , Adenosina/farmacologia , Adenosina/toxicidade , Anticorpos Monoclonais/toxicidade , Aspirina/toxicidade , Plaquetas/metabolismo , Quimioterapia Combinada , Glicoproteínas/toxicidade , Hemorragia/induzido quimicamente , Humanos , Fragmentos Fab das Imunoglobulinas/toxicidade , Fragmentos Fc das Imunoglobulinas/toxicidade , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/toxicidade , Antagonistas do Receptor Purinérgico P2Y/toxicidade , Trombose/sangue , Trombose/patologia , Ticagrelor , Fatores de Tempo
11.
Sci Transl Med ; 8(367): 367ra168, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903864

RESUMO

In patients with atrial fibrillation, oral anticoagulation with oral thrombin inhibitors (OTIs), in contrast to vitamin K antagonists (VKAs), associates with a modest increase in acute coronary syndromes (ACSs). Whether this observation is causatively linked to OTI treatment and, if so, whether OTI action is the result of a lower antithrombotic efficacy of OTI compared to VKA or reflects a yet undefined prothrombotic activity of OTI remain unclear. We analyzed platelet function in patients receiving OTI or dose-adapted VKA under static and flow conditions. In vivo, we studied arterial thrombosis in OTI-, VKA-, and vehicle-treated mice using carotid ligation and wire injury models. Further, we examined thrombus formation on human atherosclerotic plaque homogenates under arterial shear to address the relevance to human pathology. Under static conditions, aggregation in the presence of ristocetin was increased in OTI-treated blood, whereas platelet reactivity and aggregation to other agonists were only marginally affected. Under flow conditions, firm platelet adhesion and thrombus formation on von Willebrand factor, collagen, and human atherosclerotic plaque were increased in the presence of OTI in comparison to VKA. OTI treatment was associated with increased thrombus formation in injured carotid arteries of mice. Inhibition or ablation of GPIbα-thrombin interactions abolished the effect of OTI on thrombus formation, suggesting a mechanistic role of the platelet receptor GPIbα and its thrombin-binding site. The effect of OTI was also abrogated in the presence of aspirin. In summary, OTI treatment has prothrombotic activity that might contribute to the increase in ACS observed clinically in patients.


Assuntos
Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Trombina/antagonistas & inibidores , Trombose/patologia , Síndrome Coronariana Aguda/patologia , Administração Oral , Animais , Anticoagulantes/farmacologia , Artérias/patologia , Aspirina/farmacologia , Aterosclerose/patologia , Sítios de Ligação , Plaquetas/efeitos dos fármacos , Fibrinolíticos/farmacologia , Humanos , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitamina K/antagonistas & inibidores
12.
JACC Basic Transl Sci ; 1(3): 131-142., 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27766315

RESUMO

To enhance the antithrombotic properties of recombinant glycoprotein VI fragment crystallizable (GPVI-Fc), the authors incubated GPVI-Fc with anti-human Fc antibodies to cross-link the Fc tails of GPVI-Fc. Cross-linking potentiated the inhibition of human plaque- and collagen-induced platelet aggregation by GPVI-Fc under static and flow conditions without increasing bleeding time in vitro. Cross-linking with anti-human-Fc Fab2 was even superior to anti-human-Fc immunoglobulin G (IgG). Advanced optical imaging revealed a continuous sheath-like coverage of collagen fibers by cross-linked GPVI-Fc complexes. Cross-linking of GPVI into oligomeric complexes provides a new, highly effective, and probably safe antithrombotic treatment as it suppresses platelet GPVI-plaque interaction selectively at the site of acute atherothrombosis.

13.
J Am Coll Cardiol ; 65(22): 2404-15, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26046734

RESUMO

BACKGROUND: Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential. OBJECTIVES: This study sought to compare compounds interfering with platelet GPVI-atherosclerotic plaque interaction to improve current antiatherothrombotic therapy. METHODS: Human atherosclerotic plaque-induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers. RESULTS: GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc-free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release. CONCLUSIONS: Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences have relevance for clinical trials targeting GPVI-collagen interaction combined with established antiplatelet therapies in patients with spontaneous plaque rupture or intervention-associated plaque injury.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/fisiopatologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Ativação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/farmacologia , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/etiologia , Estenose das Carótidas/fisiopatologia , Humanos , Fatores Imunológicos/farmacologia , Placa Aterosclerótica/complicações , Placa Aterosclerótica/diagnóstico , Ratos
14.
Dtsch Med Wochenschr ; 140(8): 593-602, 2015 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-25945909

RESUMO

The diabetic foot syndrome (DFS) is a complication of diabetes mellitus, implying a serious impairment in quality of life for patients in advanced stages of the disease. Early detection of risks and stage-appropriate intervention are essential to increase the chances of foot salvage. The pathophysiological conditions for the formation of a DFS and treatment guidelines are currently underestimated. Up to 80 % of amputations are preventable if appropriate therapeutic steps were initiated on time in patients with DFS as part of a multidisciplinary approach. By proper prevention, the number of patients with DFS as well as the risk of recurrent ulcers can be reduced. This CME article gives an overview of the pathogenesis, diagnosis, therapy and prevention of DFS.


Assuntos
Amputação Cirúrgica/métodos , Antibacterianos/uso terapêutico , Bandagens Compressivas , Desbridamento/métodos , Pé Diabético/diagnóstico , Pé Diabético/terapia , Terapia por Exercício/métodos , Idoso , Terapia Combinada/métodos , Pé Diabético/etiologia , Feminino , Humanos , Síndrome
15.
Z Med Phys ; 23(3): 194-203, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23313616

RESUMO

BACKGROUND: Tissue characterization of atherosclerosis by absorption-based imaging methods is limited due to low soft-tissue contrast. Grating-based phase-contrast computed tomography (PC-CT) may become an alternative for plaque assessment if the phase signal can be retrieved at clinically applicable photon energies. The aims of this feasibility study were (i) to characterize arterial vessels at low and high photon energies, (ii) to extract qualitative features and (iii) quantitative phase-contrast Hounsfield units (HU-phase) of plaque components at 53 keV using histopathology as gold standard. MATERIALS AND METHODS: Five human carotid artery specimens underwent grating-based PC-CT using synchrotron radiation of either 23 keV or 53 keV and histological work-up. Specimens without advanced atherosclerosis were used to extract signal criteria of vessel layers. Diseased specimens were screened for important plaque components including fibrous tissue (FT), lipid (LIP), necrotic core (NEC), intraplaque hemorrhage (IPH), inflammatory cell infiltration (INF) and calcifications (CA). Qualitative features as well as quantitative HU-phase were analyzed. RESULTS: Thirty-three regions in 6 corresponding PC-CT scans and histology sections were identified. Healthy samples had the same signal characteristics at 23 keV and 53 keV with bright tunica intima and adventitia and dark media. Plaque components showed differences in signal intensity and texture at 53 keV. Quantitative analysis demonstrated the highest HU-phase of soft plaque in dense FT. Less organized LIP, NEC and INF were associated with lower HU-phase values. The highest HU-phase were measured in CA. CONCLUSION: PC-CT of atherosclerosis is feasible at high, clinically relevant photon energies and provides detailed information about plaque structure including features of high risk vulnerable plaques.


Assuntos
Estenose das Carótidas/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Refratometria/métodos , Tomografia Computadorizada por Raios X/métodos , Difração de Raios X/métodos , Estenose das Carótidas/patologia , Humanos , Fótons/uso terapêutico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
J Thromb Thrombolysis ; 32(2): 158-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21424266

RESUMO

Atherosclerosis has an important inflammatory component. Macrophages accumulating in atherosclerotic arteries produce prostaglandin E(2) (PGE(2)), a main inflammatory mediator. Platelets express inhibitory receptors (EP(2), EP(4)) and a stimulatory receptor (EP(3)) for this prostanoid. Recently, it has been reported in ApoE(-/-) mice that PGE(2) accumulating in inflammatory atherosclerotic lesions might contribute to atherothrombosis after plaque rupture by activating platelet EP(3), and EP(3) blockade has been proposed to be a promising new approach in anti-thrombotic therapy. The aim of our investigation was to study the role of PGE(2) in human atherosclerotic plaques on human platelet function and thrombus formation. Plaque PGE(2) might either activate or inhibit platelets depending on stimulation of either EP(3) or EP(4), respectively. We found that the two EP(3)-antagonists AE5-599 (300 nM) and AE3-240 (300 nM) specifically and completely inhibited the synergistic effect of the EP(3)-agonist sulprostone on U46619-induced platelet aggregation in blood. However, these two EP(3)-antagonists neither inhibited atherosclerotic plaque-induced platelet aggregation, GPIIb/IIIa exposure, dense and alpha granule secretion in blood nor reduced plaque-induced platelet thrombus formation under arterial flow. The EP(4)-antagonist AE3-208 (1-3 µM) potentiated in combination with PGE(2) (1 µM) ADP-induced aggregation, demonstrating that PGE(2) enhances platelet aggregation when the inhibitory EP(4)-receptor is inactivated. However, plaque-induced platelet aggregation was not augmented after platelet pre-treatment with AE3-208, indicating that plaque PGE(2) does not stimulate the EP(4)-receptor. We found that PGE(2) was present in plaques only at very low levels (15 pg PGE(2)/mg plaque). We conclude that PGE(2) in human atherosclerotic lesions does not modulate (i.e. stimulate or inhibit) atherothrombosis in blood after plaque rupture.


Assuntos
Plaquetas/metabolismo , Estenose das Carótidas/metabolismo , Dinoprostona/metabolismo , Placa Aterosclerótica/metabolismo , Agregação Plaquetária , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Trombose/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Abortivos não Esteroides/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Plaquetas/patologia , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Naftalenos , Fenilbutiratos , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores de Prostaglandina E Subtipo EP3/agonistas , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Ruptura Espontânea , Trombose/genética , Vasoconstritores/farmacologia
17.
Cardiovasc Res ; 90(1): 157-64, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21106562

RESUMO

AIMS: Oxidative processes and vascular inflammation underlying atherosclerosis lead to an accumulation of lysophosphatidic acid (LPA) molecules in the atheromatous intima. LPA, a platelet-activating component of human atherosclerotic plaques, possibly contributes to atherothrombus formation after plaque rupture. Human platelets express mRNA for the G protein-coupled receptors LPA1₋7 that derive from megakaryocytes. The aim of our study was to identify the functional LPA receptor(s) in human platelets by silencing individual LPA receptors in megakaryocytic (MK) cells. METHODS AND RESULTS: We studied shape change of two human MK cell lines (Meg-01, Dami) by turbidometry, phase-contrast and scanning electron microscopy. They showed upon LPA stimulation a rapid, Rho-kinase-mediated shape change similar to that of human platelets. By qRT-PCR analysis we found expression of LPA1₋7 in both cell lines; LPA4 and LPA5 were the most abundant receptor transcripts. In both Meg-01 and Dami cells, the rank order of activation by LPA species was similar to that found in platelets: alkyl-LPA 18:1 > alkyl-LPA 16:0 > acyl-LPA 18:1 >> alkyl-LPA 18:0. Knock-down of individual LPA receptors by siRNA showed that LPA-mediated activation of MK cells was mediated by LPA5, but not by LPA1₋4,6,7. Importantly, we found that human atherosclerotic plaque and lipid-rich core induced shape change of Dami cells, and that this effect was inhibited after LPA5 silencing. CONCLUSIONS: Our findings indicate that LPA5 mediates LPA-induced shape change of MK cells and support its involvement in atherosclerotic plaque and lipid-rich core-mediated platelet activation. This receptor could be an attractive novel target for antithrombotic therapy.


Assuntos
Aterosclerose/metabolismo , Forma Celular , Lisofosfolipídeos/metabolismo , Megacariócitos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Aterosclerose/patologia , Linhagem Celular , Humanos , Metabolismo dos Lipídeos , Megacariócitos/patologia , Microscopia Eletrônica de Varredura , Nefelometria e Turbidimetria , Interferência de RNA , Receptores de Ácidos Lisofosfatídicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção , Quinases Associadas a rho/metabolismo
18.
J Transl Med ; 8: 128, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21134286

RESUMO

BACKGROUND: Platelet activation requires rapid remodeling of the actin cytoskeleton which is regulated by small GTP-binding proteins. By using the Rac1-specific inhibitor NSC23766, we have recently found that Rac1 is a central component of a signaling pathway that regulates dephosphorylation and activation of the actin-dynamising protein cofilin, dense and α-granule secretion, and subsequent aggregation of thrombin-stimulated washed platelets. OBJECTIVES: To study whether NSC23766 inhibits stimulus-induced platelet secretion and aggregation in blood. METHODS: Human platelet aggregation and ATP-secretion were measured in hirudin-anticoagulated blood and platelet-rich plasma (PRP) by using multiple electrode aggregometry and the Lumi-aggregometer. Platelet P-selectin expression was quantified by flow cytometry. RESULTS: NSC23766 (300 µM) inhibited TRAP-, collagen-, atherosclerotic plaque-, and ADP-induced platelet aggregation in blood by 95.1%, 93.4%, 92.6%, and 70%, respectively. The IC50 values for inhibition of TRAP-, collagen-, and atherosclerotic plaque-, were 50 ± 18 µM, 64 ± 35 µM, and 50 ± 30 µM NSC23766 (mean ± SD, n = 3-7), respectively. In blood containing RGDS to block integrin αIIbß3-mediated platelet aggregation, NSC23766 (300 µM) completely inhibited P-selectin expression and reduced ATP-secretion after TRAP and collagen stimulation by 73% and 85%, respectively. In ADP-stimulated PRP, NSC23766 almost completely inhibited P-selectin expression, in contrast to aspirin, which was ineffective. Moreover, NSC23766 (300 µM) decreased plaque-stimulated platelet adhesion/aggregate formation under arterial flow conditions (1500s-1) by 72%. CONCLUSIONS: Rac1-mediated signaling plays a central role in secretion-dependent platelet aggregation in blood stimulated by a wide array of platelet agonists including atherosclerotic plaque. By specifically inhibiting platelet secretion, the pharmacological targeting of Rac1 could be an interesting approach in the development of future antiplatelet drugs.


Assuntos
Trifosfato de Adenosina/metabolismo , Placa Aterosclerótica/patologia , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Fosfatase Ácida/metabolismo , Difosfato de Adenosina/farmacologia , Aminoquinolinas/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Colágeno/farmacologia , Humanos , Isoenzimas/metabolismo , Selectina-P/metabolismo , Plasma Rico em Plaquetas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato , Trombose/patologia , Trombose/fisiopatologia
19.
J Am Coll Cardiol ; 55(11): 1147-58, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20223370

RESUMO

OBJECTIVES: The aim of this study was to understand the initial mechanism of arterial thrombus formation induced by vulnerable human atherosclerotic plaques to re-assess and improve current antithrombotic strategies. BACKGROUND: Rupture of atherosclerotic plaques causes arterial thrombus formation that might lead to myocardial infarction and ischemic stroke. Atherothrombosis is considered as an inseparable tangle of platelet activation and coagulation processes, involving plaque components such as tissue factor (TF) and collagen as well as blood-borne TF and coagulation factor XIIa (FXIIa). A combination of anticoagulants and antiplatelet agents is the present treatment. METHODS: Human atheromatous plaque material was exposed to blood or blood components at physiological calcium/magnesium concentration. Platelet aggregation and coagulation were measured under static and arterial flow conditions by state-of-the-art microscopic and physiological techniques. Plaque TF, plaque collagen, FXIIa, and platelet glycoprotein VI (GPVI) were specifically inhibited. RESULTS: Plaques induced thrombus formation by 2 discrete steps. The rapid first phase of GPVI-mediated platelet adhesion and aggregation onto plaque collagen occurred within 1 min. The second phase of coagulation started after a delay of >3 min with the formation of thrombin and fibrin, and was driven entirely by plaque TF. Coagulation occurred only in flow niches provided by platelet aggregates, with no evidence for a role of blood-borne TF and FXIIa. Inhibition of GPVI but not plaque TF inhibited plaque-induced thrombus formation. CONCLUSIONS: The major thrombogenic plaque components--collagen and TF--induce platelet activation and coagulation, respectively, in 2 consecutive steps. Targeting specifically the first step is crucial and might be sufficient to inhibit atherothrombus formation.


Assuntos
Aterosclerose/complicações , Ativação Plaquetária/fisiologia , Trombose/etiologia , Trombose/fisiopatologia , Aterosclerose/patologia , Colágeno , Feminino , Fibrina , Humanos , Masculino , Glicoproteínas da Membrana de Plaquetas , Trombina , Tromboplastina
20.
J Vasc Surg ; 48(5): 1217-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18692349

RESUMO

BACKGROUND: Endothelial progenitor cells (EPC) contribute to vascular regeneration. Since surgical injury and burns induce a pro-inflammatory and proangiogenic response, we investigated the effect of vascular injury with minimal surgical trauma after endarterectomy on the number of circulating EPC and systemic inflammatory changes. METHODS AND RESULTS: Forty-five patients with peripheral arterial occlusive disease were included in the study. Venous blood samples were taken before and 1 day after endarterectomy and plaque material was obtained. Ten patients with minor surgery served as controls. Circulating CD133+CD34+, VEGFR-2+CD34+ progenitor cells and surface expression of CD11b on circulating neutrophils were analysed using flow cytometry. EPCs were characterized in a culture assay as double-positive for DiI-LDL uptake and lectin binding. Cytokine concentrations of interleukin (IL)-6, IL-8, TNF-alpha, IL-1ss, IL-10, IL-12, SDF-1, G-CSF, and VEGF were measured in plasma and tissue samples. After endarterectomy a significant decrease in circulating EPC, CD133+CD34+, and VEGFR-2+CD34+ cells was observed. This was associated with a specific pattern of changes in circulating cytokine levels after endarterectomy with a decrease in IL-1 beta and IL-12, an increase in IL-6 and G-CSF plasma concentrations, and surface expression of CD11b on circulating neutrophils. In contrast, after minor surgery an increase in circulating CD133+CD34+ cells, IL-6, IL-8, and IL-10 was found. Interestingly there was a negative association between levels of local IL-6 within the plaque and only the preoperative levels of circulating CD133+C34+. CONCLUSION: Endarterectomy induces changes in circulating cytokines and a decline in circulating progenitor cells, which may be due to recruitment of progenitor cells to the injured vessels. This is supported by the negative association between plaque inflammation and circulating progenitor cells before endarterectomy.


Assuntos
Arteriopatias Oclusivas/patologia , Aterosclerose/patologia , Endarterectomia , Células Endoteliais/patologia , Doenças Vasculares Periféricas/patologia , Células-Tronco/patologia , Antígeno AC133 , Idoso , Antígenos CD/sangue , Antígenos CD34/sangue , Arteriopatias Oclusivas/imunologia , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/cirurgia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/cirurgia , Antígeno CD11b/sangue , Células Cultivadas , Constrição Patológica , Citocinas/sangue , Células Endoteliais/química , Células Endoteliais/imunologia , Feminino , Glicoproteínas/sangue , Humanos , Masculino , Peptídeos/sangue , Doenças Vasculares Periféricas/imunologia , Doenças Vasculares Periféricas/metabolismo , Doenças Vasculares Periféricas/cirurgia , Células-Tronco/química , Células-Tronco/imunologia , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...