Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 160(4): 2093-108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027663

RESUMO

Like many other viruses, Tobacco mosaic virus replicates in association with the endoplasmic reticulum (ER) and exploits this membrane network for intercellular spread through plasmodesmata (PD), a process depending on virus-encoded movement protein (MP). The movement process involves interactions of MP with the ER and the cytoskeleton as well as its targeting to PD. Later in the infection cycle, the MP further accumulates and localizes to ER-associated inclusions, the viral factories, and along microtubules before it is finally degraded. Although these patterns of MP accumulation have been described in great detail, the underlying mechanisms that control MP fate and function during infection are not known. Here, we identify CELL-DIVISION-CYCLE protein48 (CDC48), a conserved chaperone controlling protein fate in yeast (Saccharomyces cerevisiae) and animal cells by extracting protein substrates from membranes or complexes, as a cellular factor regulating MP accumulation patterns in plant cells. We demonstrate that Arabidopsis (Arabidopsis thaliana) CDC48 is induced upon infection, interacts with MP in ER inclusions dependent on the MP N terminus, and promotes degradation of the protein. We further provide evidence that CDC48 extracts MP from ER inclusions to the cytosol, where it subsequently accumulates on and stabilizes microtubules. We show that virus movement is impaired upon overexpression of CDC48, suggesting that CDC48 further functions in controlling virus movement by removal of MP from the ER transport pathway and by promoting interference of MP with microtubule dynamics. CDC48 acts also in response to other proteins expressed in the ER, thus suggesting a general role of CDC48 in ER membrane maintenance upon ER stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Ciclo Celular/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Biomarcadores/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Fluorescência Verde/metabolismo , Corpos de Inclusão/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/virologia
2.
Plant J ; 62(5): 829-39, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230489

RESUMO

A panel of seven SR1 tobacco mutants (ATER1 to ATER7) derived via T-DNA activation tagging and screening for resistance to a microtubule assembly inhibitor, ethyl phenyl carbamate, were used to study the role of microtubules during infection and spread of tobacco mosaic virus (TMV). In one of these lines, ATER2, alpha-tubulin is shifted from the tyrosinylated into the detyrosinated form, and the microtubule plus-end marker GFP-EB1 moves significantly slower when expressed in the background of the ATER2 mutant as compared with the SR1 wild type. The efficiency of cell-to-cell movement of TMV encoding GFP-tagged movement protein (MP-GFP) is reduced in ATER2 accompanied by a reduced association of MP-GFP with plasmodesmata. This mutant is also more tolerant to viral infection as compared with the SR1 wild type, implying that reduced microtubule dynamics confer a comparative advantage in face of TMV infection.


Assuntos
Microtúbulos/metabolismo , Nicotiana/genética , Doenças das Plantas/genética , Vírus do Mosaico do Tabaco/fisiologia , Tubulina (Proteína)/metabolismo , DNA Bacteriano/genética , Mutação , Fenilcarbamatos/farmacologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana/virologia , Uretana/farmacologia , Replicação Viral
3.
Mol Cell Biol ; 28(13): 4251-60, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458057

RESUMO

The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.


Assuntos
Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Membrana/metabolismo , Peso Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico
4.
Plant Physiol ; 147(2): 611-23, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18408045

RESUMO

The targeting of the movement protein (MP) of Tobacco mosaic virus to plasmodesmata involves the actin/endoplasmic reticulum network and does not require an intact microtubule cytoskeleton. Nevertheless, the ability of MP to facilitate the cell-to-cell spread of infection is tightly correlated with interactions of the protein with microtubules, indicating that the microtubule system is involved in the transport of viral RNA. While the MP acts like a microtubule-associated protein able to stabilize microtubules during late infection stages, the protein was also shown to cause the inactivation of the centrosome upon expression in mammalian cells, thus suggesting that MP may interact with factors involved in microtubule attachment, nucleation, or polymerization. To further investigate the interactions of MP with the microtubule system in planta, we expressed the MP in the presence of green fluorescent protein (GFP)-fused microtubule end-binding protein 1a (EB1a) of Arabidopsis (Arabidopsis thaliana; AtEB1a:GFP). The two proteins colocalize and interact in vivo as well as in vitro and exhibit mutual functional interference. These findings suggest that MP interacts with EB1 and that this interaction may play a role in the associations of MP with the microtubule system during infection.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Arabidopsis/virologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Microscopia Eletrônica , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas , RNA Viral/metabolismo
5.
Traffic ; 9(12): 2073-88, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19281527

RESUMO

The cell-to-cell movement of Tobacco mosaic virus through plasmodesmata (PD) requires virus-encoded movement protein (MP). The MP targets PD through the endoplasmic reticulum (ER)/actin network, whereas the intercellular movement of the viral RNA genome has been correlated with the association of the MP with mobile, microtubule-proximal particles in cells at the leading front of infection as well as the accumulation of the protein on the microtubule network during later infection stages. To understand how the associations of MP with ER and microtubules are functionally connected, we applied multiple marker three-dimensional confocal and time-lapse video microscopies to Nicotiana benthamiana cells expressing fluorescent MP, fluorescent RNA and fluorescent cellular markers. We report the reconstitution of MP-dependent RNA transport to PD in a transient assay. We show that transiently expressed MP occurs in association with small particles as observed during infection. The same MP accumulates in PD and mediates the transport of its messenger RNA transcript to the pore. In the cellular cortex, the particles occur at microtubule-proximal sites and can undergo ER-associated and latrunculin-sensitive movements between such sites. These and other observations suggest that the microtubule network performs anchorage and release functions for controlling the assembly and intracellular movement of MP-containing RNA transport particles in association with the ER.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/metabolismo , Plasmodesmos/virologia , RNA Viral/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Vírion/metabolismo , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Nicotiana/metabolismo , Nicotiana/virologia
6.
Mol Biol Cell ; 16(11): 5202-14, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16135531

RESUMO

The Saccharomyces cerevisiae Taz1 protein is the orthologue of human Tafazzin, a protein that when inactive causes Barth Syndrome (BTHS), a severe inherited X-linked disease. Taz1 is a mitochondrial acyltransferase involved in the remodeling of cardiolipin. We show that Taz1 is an outer mitochondrial membrane protein exposed to the intermembrane space (IMS). Transport of Taz1 into mitochondria depends on the receptor Tom5 of the translocase of the outer membrane (TOM complex) and the small Tim proteins of the IMS, but is independent of the sorting and assembly complex (SAM). TAZ1 deletion in yeast leads to growth defects on nonfermentable carbon sources, indicative of a defect in respiration. Because cardiolipin has been proposed to stabilize supercomplexes of the respiratory chain complexes III and IV, we assess supercomplexes in taz1delta mitochondria and show that these are destabilized in taz1Delta mitochondria. This leads to a selective release of a complex IV monomer from the III2IV2 supercomplex. In addition, assembly analyses of newly imported subunits into complex IV show that incorporation of the complex IV monomer into supercomplexes is affected in taz1Delta mitochondria. We conclude that inactivation of Taz1 affects both assembly and stability of respiratory chain complexes in the inner membrane of mitochondria.


Assuntos
Aciltransferases/fisiologia , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Aciltransferases/metabolismo , Sequência de Aminoácidos , Transporte de Elétrons , Genes Ligados ao Cromossomo X , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Mitocondriais/genética , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação , Miocárdio/patologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
7.
J Biol Chem ; 280(7): 6215-21, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15591051

RESUMO

The carrier proteins of the mitochondrial inner membrane consist of three structurally related tandem repeats (modules). Several different, and in some cases contradictory, views exist on the role individual modules play in carrier transport across the mitochondrial membranes and how they promote protein insertion into the inner membrane. Thus, by use of specific translocation intermediates, we performed a detailed analysis of carrier biogenesis and assessed the physical association of carrier modules with the inner membrane translocation machinery. Here we have reported that each module of the dicarboxylate carrier contains sufficient targeting information for its transport across the outer mitochondrial membrane. The carboxyl-terminal module possesses major targeting information to facilitate the direct binding of the carrier protein to the inner membrane twin-pore translocase and subsequent insertion into the inner membrane in a membrane potential-dependent manner. We concluded that, in this case, a single structural repeat can drive inner membrane insertion, whereas all three related units contribute targeting information for outer membrane translocation.


Assuntos
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Potenciais da Membrana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
9.
Curr Biol ; 13(8): R326-37, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12699647

RESUMO

Apart from a handful of proteins encoded by the mitochondrial genome, most proteins residing in this organelle are nuclear-encoded and synthesised in the cytosol. Thus, delivery of proteins to their final destination depends on a network of specialised import components that form at least four main translocation complexes. The import machinery ensures that proteins earmarked for the mitochondrion are recognised and delivered to the organelle, transported across membranes, sorted to the correct compartment and assisted in overcoming energetic barriers.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Biológicos , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Transporte/metabolismo , Citosol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Science ; 299(5613): 1747-51, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12637749

RESUMO

The mitochondrial inner membrane imports numerous proteins that span it multiple times using the membrane potential Deltapsi as the only external energy source. We purified the protein insertion complex (TIM22 complex), a twin-pore translocase that mediated the insertion of precursor proteins in a three-step process. After the precursor is tethered to the translocase without losing energy from the Deltapsi, two energy-requiring steps were needed. First, Deltapsi acted on the precursor protein and promoted its docking in the translocase complex. Then, Deltapsi and an internal signal peptide together induced rapid gating transitions in one pore and closing of the other pore and drove membrane insertion to completion. Thus, protein insertion was driven by the coordinated action of a twin-pore complex in two voltage-dependent steps.


Assuntos
Proteínas de Transporte/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ativação do Canal Iônico , Bicamadas Lipídicas , Lipossomos , Potenciais da Membrana , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
11.
Cell ; 111(4): 507-18, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12437924

RESUMO

Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane space. Tim50 interacts with preproteins in transit and directs them to the channel protein Tim23. Inactivation of Tim50 strongly inhibits the import of preproteins with a classical matrix-targeting signal, while preproteins carrying an additional inner membrane-sorting signal do not strictly depend on Tim50. Thus, Tim50 is crucial for guiding the precursors of matrix proteins to their insertion site in the inner membrane.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA