Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905050

RESUMO

Dynamic loads have short and long-term effects in the rehabilitation of lower limb joints. However, an effective exercise program for lower limb rehabilitation has been debated for a long time. Cycling ergometers were instrumented and used as a tool to mechanically load the lower limbs and track the joint mechano-physiological response in rehabilitation programs. Current cycling ergometers apply symmetrical loading to the limbs, which may not reflect the actual load-bearing capacity of each limb, as in Parkinson's and Multiple Sclerosis diseases. Therefore, the present study aimed to develop a new cycling ergometer capable of applying asymmetric loads to the limbs and validate its function using human tests. The instrumented force sensor and crank position sensing system recorded the kinetics and kinematics of pedaling. This information was used to apply an asymmetric assistive torque only to the target leg using an electric motor. The performance of the proposed cycling ergometer was studied during a cycling task at three different intensities. It was shown that the proposed device reduced the pedaling force of the target leg by 19% to 40%, depending on the exercise intensity. This reduction in pedal force caused a significant reduction in the muscle activity of the target leg (p < 0.001), without affecting the muscle activity of the non-target leg. These results demonstrated that the proposed cycling ergometer device is capable of applying asymmetric loading to lower limbs, and thus has the potential to improve the outcome of exercise interventions in patients with asymmetric function in lower limbs.


Assuntos
Ciclismo , Tecnologia Assistiva , Torque , Ciclismo/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Fenômenos Biomecânicos , Perna (Membro)/fisiologia ,
2.
J Biomech Eng ; 144(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062965

RESUMO

Machine learning-based activity and gait phase recognition algorithms are used in powered motion assistive devices to inform control of motorized components. The objective of this study was to develop a supervised multiclass classifier to simultaneously detect activity and gait phase (stance, swing) in real-world walking, stair ascent, and stair descent using inertial measurement data from the thigh and shank. The intended use of this algorithm was for control of a motion assistive device local to the knee. Using data from 80 participants, two decision trees and five long short-term memory (LSTM) models that each used different feature sets were initially tested and evaluated using a novel performance metric: proportion of perfectly classified strides (PPCS). Based on the PPCS of these initial models, five additional posthoc LSTM models were tested. Separate models were developed to classify (i) both activity and gait phase simultaneously (one model predicting six states), and (ii) activity-specific models (three individual binary classifiers predicting stance/swing phases). The superior activity-specific model had an accuracy of 98.0% and PPCS of 55.7%. The superior six-phase model used filtered inertial measurement data as its features and a median filter on its predictions and had an accuracy of 92.1% and PPCS of 22.9%. Pooling stance and swing phases from all activities and treating this model as a binary classifier, this model had an accuracy of 97.1%, which may be acceptable for real-world lower limb exoskeleton control if only stance and swing gait phases must be detected. Keywords: machine learning, deep learning, inertial measurement unit, activity recognition, gait.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Aprendizado de Máquina
3.
J Biomech Eng ; 144(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35678792

RESUMO

When runners impact the ground, they experience a sudden peak ground reaction force (GRF), which may be up to 4× greater than their bodyweight. Increased GRF impact peak magnitude has been associated with lower limb injuries in runners. Yet, shoe midsoles are capable of cushioning the impact between the runner and the ground to reduce GRF. It has been proposed that midsoles should be tunable with subject mass to minimize GRF and reduce risk of injury. Auxetic metamaterials, structures designed to achieve negative Poisson's ratios, demonstrate superior impact properties and are highly tunable. Recently, auxetic structures have been introduced in footwear, but their effects on GRF are not documented in literature. This work investigates the viability of a three-dimensional auxetic impact structure with a tunable force plateau as a midsole through mass-spring-damper simulation. An mass-spring-damper model was used to perform 315 simulations considering combinations of seven subject masses (45-90 kg), 15 auxetic plateau forces (72-1080 N), and three auxetic damping conditions (450, 725, and 1000 Ns/m) and regression analysis was used to determine their influence on GRF impact peak, energy, instantaneous, and average loading rate. Simulations showed that tuning auxetic plateau force and damping based on subject mass may reduce GRF impact and loading rate versus simulated conventional midsoles. Auxetic plateau force and damping conditions of 450 Ns/m and ∼1 bodyweight (BW), respectively, minimized peak impact GRF. This work demonstrates the need for tunable auxetic midsoles and may inform future work involving midsole testing.


Assuntos
Sapatos , Fenômenos Biomecânicos , Simulação por Computador
4.
J Biomech ; 135: 111032, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35305512

RESUMO

Lower limb tissue stiffness is contingent on various factors, including location, tissue composition, loading rates, and the geometry of the indenting object. Previous studies demonstrated that tissue stiffness varies greatly between individuals and between locations on an individual. Additionally, some studies have shown that activation of underlying muscle tissue increases bulk soft tissue stiffness. Yet, few studies have simultaneously considered both location and activation; this could be particularly important for measuring and predicting the function of devices such as prostheses and exoskeletons that interact with limbs at various locations during dynamic movement. In the present study, a custom handheld indentation device was used to explore changes in bulk leg tissue stiffness at rest and during isometric contractions. The indentation force-displacement curves were modelled using a Hertz model. At each level of activation (active/inactive), the shank had dramatically (∼150%) greater tissue stiffness than the thigh (p < 0.001). However, results suggested location independence for stiffness ratio (active/inactive, p = 0.42); for either location, stiffness was approximately 2x greater for active vs inactive muscle. These results should be considered during the development of biomechanical models to simulate human tissue indentation stiffness across a range of activation states and locations.


Assuntos
Membros Artificiais , Perna (Membro) , Fenômenos Biomecânicos , Humanos , Fenômenos Mecânicos , Movimento , Coxa da Perna
5.
Eur Spine J ; 30(4): 1035-1042, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156439

RESUMO

PURPOSE: To evaluate the effect of the braced arm-to-thigh technique (BATT) (versus self-selected techniques) on three-dimensional trunk kinematics and spinal loads for three common activities of daily living (ADLs) simulated in the laboratory: weeding (gardening), reaching for an object in a low cupboard, and car egress using the two-legs out technique. METHODS: Ten young healthy males performed each task using a self-selected technique, and then using the BATT. The pulling action of weeding was simulated using a magnet placed on a steel plate. Cupboard and car egress tasks were simulated using custom apparatus representing the dimensions of a kitchen cabinet and a medium-sized Australian car, respectively. Three-dimensional trunk kinematics and L4/L5 spinal loads were estimated using the Lifting Full-Body OpenSim model and compared between techniques. Paired t-tests were used to compare peak values between methods (self-selected vs BATT). RESULTS: The BATT significantly reduced peak extension moments (13-51%), and both compression (27-45%) and shear forces (31-62%) at L4/L5, compared to self-selected techniques for all three tasks (p < 0.05). Lateral bending angles increased with the BATT for weeding and cupboard tasks, but these changes were expected as the BATT inherently introduces asymmetric trunk motion. CONCLUSION: The BATT substantially reduced L4/L5 extension moments, and L4/L5 compression and shear forces, compared to self-selected methods, for three ADLs, in a small cohort of ten young healthy males without prior history of back pain. These study findings can be used to inform safe procedures for these three ADLs, as the results are considered representative of a mature population.


Assuntos
Atividades Cotidianas , Coxa da Perna , Braço , Austrália , Fenômenos Biomecânicos , Humanos , Vértebras Lombares , Masculino , Coluna Vertebral , Suporte de Carga
6.
J Biomech ; 100: 109584, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31898975

RESUMO

Despite the common use of one-handed lifting techniques for activities of daily living, these techniques have received little attention in the biomechanics literature. The braced arm-to-thigh technique (BATT) is a one-handed lifting method in which the dominant hand picks up objects, while the free hand braces the trunk on the ipsilateral thigh. The aim of this study was to compare the BATT to two-handed or unsupported one-handed lifting techniques with loads of 2 and 10 kg, by evaluating trunk motion and spine loading at L4/L5. Twenty healthy participants (30-70 years old) matched in age and sex to 18 participants with low back pain were recruited to the study. A three-axis load cell secured to the distal anterior thigh measured the bracing forces applied by the hand. The OpenSim Lifting Full-Body model was used to estimate trunk kinematics and spinal loading at L4/L5. Linear mixed-effects models were developed to compare trunk angles and L4/L5 moments and forces between lifting techniques. Trunk flexion angles were significantly reduced for the BATT lift compared to one-handed and two-handed stoop lifts (9-20%). However, the BATT also increased asymmetric trunk kinematics and moments at L4/L5. The BATT produced significantly lower moments (28-38%), and compressive (25-32%) and antero-posterior shear (25-45%) forces at L4/L5, compared to unsupported lifting techniques. Bracing the hand on the thigh to support the trunk can substantially reduce low back loading during lifting tasks of 2 to 10 kg.


Assuntos
Braço , Braquetes , Remoção , Dor Lombar/fisiopatologia , Vértebras Lombares/fisiologia , Vértebras Lombares/fisiopatologia , Coxa da Perna , Atividades Cotidianas , Adulto , Idoso , Fenômenos Biomecânicos , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Suporte de Carga
7.
Artigo em Inglês | MEDLINE | ID: mdl-31886037

RESUMO

The collagen fibers in the superficial layer of tibiofemoral articular cartilage exhibit distinct patterns in orientation revealed by split lines. In this study, we introduce a simulation framework to predict cartilage surface loading during walking to investigate if split line orientations correspond with principal strain directions in the cartilage surface. The two-step framework uses a multibody musculoskeletal model to predict tibiofemoral kinematics which are then imposed on a deformable surface model to predict surface strains. The deformable surface model uses absolute nodal coordinate formulation (ANCF) shell elements to represent the articular surface and a system of spring-dampers and internal pressure to represent the underlying cartilage. Simulations were performed to predict surface strains due to osmotic pressure, loading induced by walking, and the combination of both loading due to pressure and walking. Time-averaged magnitude-weighted first principal strain directions agreed well with split line maps from the literature for both the osmotic pressure and combined cases. This result suggests there is indeed a connection between collagen fiber orientation and mechanical loading, and indicates the importance of accounting for the pre-strain in the cartilage surface due to osmotic pressure.

8.
J Biomech ; 91: 61-68, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31138478

RESUMO

The Static Optimization (SO) solver in OpenSim estimates muscle activations and forces that only equilibrate applied moments. In this study, SO was enhanced through an open-access MATLAB interface, where calculated muscle activations can additionally satisfy crucial mechanical stability requirements. This Stability-Constrained SO (SCSO) is applicable to many OpenSim models and can potentially produce more biofidelic results than SO alone, especially when antagonistic muscle co-contraction is required to stabilize body joints. This hypothesis was tested using existing models and experimental data in the literature. Muscle activations were calculated by SO and SCSO for a spine model during two series of static trials (i.e. simulation 1 and 2), and also for a lower limb model (supplementary material 2). In simulation 1, symmetric and asymmetric flexion postures were compared, while in simulation 2, various external load heights were compared, where increases in load height did not change the external lumbar flexion moment, but necessitated higher EMG activations. During the tasks in simulation 1, the predicted muscle activations by SCSO demonstrated less average deviation from the EMG data (6.8% -7.5%) compared to those from SO (10.2%). In simulation 2, SO predicts constant muscle activations and forces, while SCSO predicts increases in the average activations of back and abdominal muscles that better match experimental data. Although the SCSO results are sensitive to some parameters (e.g. musculotendon stiffness), when considering the strategy of the central nervous system in distributing muscle forces and in activating antagonistic muscles, the assigned activations by SCSO are more biofidelic than SO.


Assuntos
Articulações/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Software , Coluna Vertebral/fisiologia
9.
Knee ; 26(3): 564-577, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31097362

RESUMO

BACKGROUND: Braces for medial knee osteoarthritis can reduce medial joint loads through a combination of three mechanisms: application of an external brace abduction moment, alteration of gait dynamics, and reduced activation of antagonistic muscles. Although the effect of knee bracing has been reported independently for each of these parameters, no previous study has quantified their relative contributions to reducing medial knee loads. METHODS: In this study, we used a detailed musculoskeletal model to investigate immediate changes in medial and lateral loads caused by two different knee braces: OA Assist and OA Adjuster 3 (DJO Global). Seventeen osteoarthritis subjects and eighteen healthy controls performed overground gait trials in unbraced and braced conditions. RESULTS: Across all subjects, bracing reduced medial loads by 0.1 to 0.3 times bodyweight (BW), or roughly 10%, and increased lateral loads by 0.03 to 0.2 BW. Changes in gait kinematics due to bracing were subtle, and had little effect on medial and lateral joint loads. The knee adduction moment was unaltered unless the brace moment was included in its computation. Only one muscle, biceps femoris, showed a significant change in EMG with bracing, but this did not contribute to altered peak medial contact loads. CONCLUSIONS: Knee braces reduced medial tibiofemoral loads primarily by applying a direct, and substantial, abduction moment to each subject's knee. To further enhance brace effectiveness, future brace designs should seek to enhance the magnitude of this unloader moment, and possibly exploit additional kinematic or neuromuscular gait modifications.


Assuntos
Braquetes , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/terapia , Adulto , Idoso , Fenômenos Biomecânicos/fisiologia , Estudos de Casos e Controles , Eletromiografia , Feminino , Marcha/fisiologia , Músculos Isquiossurais/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Adulto Jovem
10.
Comput Methods Biomech Biomed Engin ; 22(5): 451-464, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714401

RESUMO

There is currently no validated full-body lifting model publicly available on the OpenSim modelling platform to estimate spinal loads during lifting. In this study, the existing full-body-lumbar-spine model was adapted and validated for lifting motions to produce the lifting full-body model. Back muscle activations predicted by the model closely matched the measured erector spinae activation patterns. Model estimates of intradiscal pressures and in vivo measurements were strongly correlated. The same spine loading trends were observed for model estimates and reported vertebral body implant measurements. These results demonstrate the suitability of this model to evaluate changes in lumbar loading during lifting.


Assuntos
Remoção , Vértebras Lombares/fisiologia , Modelos Biológicos , Análise e Desempenho de Tarefas , Fenômenos Biomecânicos , Força Compressiva , Eletromiografia , Humanos , Disco Intervertebral/fisiologia , Masculino , Músculo Esquelético/fisiologia , Pressão , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Suporte de Carga , Adulto Jovem
11.
J Biomech ; 82: 124-133, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420173

RESUMO

Injuries to the anterior cruciate ligament (ACL) and menisci commonly lead to early onset osteoarthritis. Treatments that can restore normative cartilage loading patterns may mitigate the risk of osteoarthritis, though it is unclear whether such a goal is achievable through conservative rehabilitation. We used musculoskeletal simulation to predict cartilage and ligament loading patterns during walking in intact, ACL deficient, menisci deficient, and ACL-menisci deficient knees. Stochastic simulations with varying coordination strategies were then used to test whether neuromuscular control could be modulated to restore normative knee mechanics in the pathologic conditions. During early stance, a 3 mm increase in anterior tibial translation was predicted in the ACL deficient knee. Mean cartilage contact pressure increased by 18% and 24% on the medial and lateral plateaus, respectively, in the menisci deficient knee. Variations in neuromuscular coordination were insufficient to restore normative cartilage contact patterns in either the ACL or menisci deficient knees. Elevated cartilage contact pressures in the pathologic knees were observed in regions where cartilage wear patterns have previously been reported. These results suggest that altered cartilage tissue loading during gait may contribute to region-specific degeneration patterns, and that varying neuromuscular coordination in isolation is unlikely to restore normative knee mechanics.


Assuntos
Lesões do Ligamento Cruzado Anterior/patologia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Sistema Nervoso Central/fisiologia , Lesões do Menisco Tibial/patologia , Lesões do Menisco Tibial/fisiopatologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Suporte de Carga , Adulto Jovem
12.
J Biomech ; 76: 253-258, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29935735

RESUMO

Unloader braces are one non-invasive treatment of knee osteoarthritis, which primarily function by applying an external abduction moment to the joint to reduce loads in the medial compartment of the knee. We developed a novel method using brace deflection to estimate the mechanical effect of valgus braces and validated this model using strain gauge instrumentation. Three subjects performed static and walking trials, in which the moment applied by an instrumented brace was calculated using the deflection and strain methods. The deflection method predicted average brace moments of 8.7 Nm across static trials; mean error between the deflection model predictions and the gold-standard strain gauge measurements was 0.32 Nm. Mean brace moment predictions throughout gait ranged from 7.1 to 8.7 Nm using the deflection model. Maximum differences (MAE) over the gait cycle in mean and peak brace moments between methods were 1.50 Nm (0.96) and 0.60 Nm (0.42). Our proposed method enables quantification of brace abduction moments without the use of custom instrumentation. While the deflection-based method is similar to that implemented by Schmalz et al. (2010), the proposed method isolates abduction deflection from the 3 DOF angular changes that occur within the brace. Though the model should be viewed with more caution during swing (MAE = 1.16 Nm), it was shown that the accuracy is influenced by the uncertainty in angle measurement due to cluster spacing. In conclusion, the results demonstrate that the deflection-based method developed can predict comparable brace moments to those of the previously established strain method.


Assuntos
Braquetes , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Caminhada/fisiologia , Adulto Jovem
13.
J Appl Biomech ; 34(5): 419-423, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29809081

RESUMO

Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a noninvasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis, and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) root mean square differences of 0.17 (0.05) bodyweight compared with the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.


Assuntos
Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Análise de Componente Principal , Adulto , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/etiologia , Valor Preditivo dos Testes
14.
Nat Commun ; 9(1): 1592, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686281

RESUMO

Muscles are the actuators that drive human movement. However, despite many decades of work, we still cannot readily assess the forces that muscles transmit during human movement. Direct measurements of muscle-tendon loads are invasive and modeling approaches require many assumptions. Here, we introduce a non-invasive approach to assess tendon loads by tracking vibrational behavior. We first show that the speed of shear wave propagation in tendon increases with the square root of axial stress. We then introduce a remarkably simple shear wave tensiometer that uses micron-scale taps and skin-mounted accelerometers to track tendon wave speeds in vivo. Tendon wave speeds are shown to modulate in phase with active joint torques during isometric exertions, walking, and running. The capacity to non-invasively assess muscle-tendon loading can provide new insights into the motor control and biomechanics underlying movement, and could lead to enhanced clinical treatment of musculoskeletal injuries and diseases.


Assuntos
Modelos Biológicos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Acelerometria/instrumentação , Acelerometria/métodos , Adulto , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Análise de Elementos Finitos , Voluntários Saudáveis , Humanos , Masculino , Suínos , Adulto Jovem
15.
Gait Posture ; 60: 181-187, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248848

RESUMO

BACKGROUND: Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. METHODS: We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. RESULTS: Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. CONCLUSIONS: This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities.


Assuntos
Cartilagem Articular/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Patela/fisiologia , Suporte de Carga/fisiologia , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Masculino , Pressão , Caminhada/fisiologia
16.
J Orthop Res ; 36(1): 351-356, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28755495

RESUMO

Valgus unloader braces are a conservative treatment option for medial compartment knee osteoarthritis that aim to unload the damaged medial compartment through application of an external abduction moment. Patient response to bracing is highly variable, however. While some experience improvements in pain, function, and joint loading, others receive little to no benefit. The objective of this work was to analyze clinical measures and biomechanical characteristics of unbraced walking to identify variables that are associated with the mechanical effectiveness of valgus unloader bracing. Seventeen patients with medial knee osteoarthritis walked overground with and without a valgus unloader brace. A musculoskeletal model was used to estimate the contact forces in the medial compartment of the tibiofemoral joint and brace effectiveness was defined as the decrease in peak medial contact force between unbraced and braced conditions. Stepwise linear regression was used to identify clinical and biomechanical measures that predicted brace effectiveness. The final regression model explained 77% of the variance in brace effectiveness using two variables. Bracing was more effective for those with greater peak external hip adduction moments and for those with higher Kellgren-Lawrence grades, indicating more severe radiographic osteoarthritis. The hip adduction moment was the best predictor of brace effectiveness and was well correlated with several other measures indicating that it may be functioning as a "biomarker" for good bracing candidates. CLINICAL SIGNIFICANCE: The ability to predict good candidates for valgus bracing may improve issues of patient compliance and could enable the ability to train patients to respond better to bracing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:351-356, 2018.


Assuntos
Braquetes , Osteoartrite do Joelho/terapia , Fenômenos Biomecânicos , Humanos , Osteoartrite do Joelho/fisiopatologia , Caminhada
17.
Knee ; 24(5): 977-993, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760608

RESUMO

BACKGROUND: Physical activity and exercise is central to conservative management of knee osteoarthritis (KOA), but is often difficult for patients with KOA to maintain over the decade or more prior to surgical management. Better approaches are needed for maintaining physical function and health in this population that can also address the patho-biomechanics of the osteoarthritic knee. The objective of the study is to quantify how a lower-extremity robotic exoskeleton (dermoskeleton) modifies the external knee moments during over-ground walking in a sample of healthy adults, and to evaluate these biomechanical modifications in the context of the osteoarthritic knee. METHOD: Motion analysis data was acquired for 13 participants walking with and without the dermoskeleton. Force plate data, external knee moment arms, and knee moments in the laboratory and tibia frames of reference were computed, as well as time-distance parameters of walking, and compared between the two conditions. RESULTS: Although gait speed was not different, users took shorter and wider steps when walking with the dermoskeleton. Ground reaction forces and early-stance knee moment increased due to the added mass of the dermoskeleton, but the knee adduction moment was significantly reduced in late stance phase of gait. There was no effect on the knee torsional moment when measured in the anatomical frame of reference, and the late-stance knee flexion moment was invariant. CONCLUSIONS: The dermoskeleton demonstrated favorable biomechanical modifications at the knee in healthy adults while walking. Studies are warranted to explore this technology for enabling physical activity-based interventions in patients with KOA.


Assuntos
Exoesqueleto Energizado , Marcha/fisiologia , Articulação do Joelho/fisiologia , Análise e Desempenho de Tarefas , Adulto , Fenômenos Biomecânicos , Feminino , Voluntários Saudáveis , Humanos , Extremidade Inferior/fisiologia , Masculino , Movimento/fisiologia , Amplitude de Movimento Articular , Tíbia/fisiologia , Caminhada/fisiologia , Adulto Jovem
19.
J Biomech ; 57: 125-130, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28342531

RESUMO

Musculoskeletal models are increasingly used to estimate medial and lateral knee contact forces, which are difficult to measure in vivo. The sensitivity of contact force predictions to modeling parameters is important to the interpretation and implication of results generated by the model. The purpose of this study was to quantify the sensitivity of knee contact force predictions to simultaneous errors in frontal plane knee alignment and contact locations under different dynamic conditions. We scaled a generic musculoskeletal model for N=23 subjects' stature and radiographic knee alignment, then perturbed frontal plane alignment and mediolateral contact locations within experimentally-possible ranges of 10° to -10° and 10 to -10mm, respectively. The sensitivity of first peak, second peak, and mean medial and lateral knee contact forces to knee adduction angle and contact locations was modeled using linear regression. Medial loads increased, and lateral loads decreased, by between 3% and 6% bodyweight for each degree of varus perturbation. Shifting the medial contact point medially increased medial loads and decreased lateral loads by between 1% and 4% bodyweight per millimeter. This study demonstrates that realistic measurement errors of 5mm (contact distance) or 5° (frontal plane alignment) could result in a combined 50% BW error in subject specific contact force estimates. We also show that model sensitivity varies between subjects as a result of differences in gait dynamics. These results demonstrate that predicted knee joint contact forces should be considered as a range of possible values determined by model uncertainty.


Assuntos
Articulação do Joelho/fisiologia , Modelos Biológicos , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Osteoartrite do Joelho/fisiopatologia , Radiografia , Adulto Jovem
20.
J Biomech ; 51: 1-7, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27939752

RESUMO

Patella alta is common in cerebral palsy, especially in patients with crouch gait. Correction of patella alta has been advocated in the treatment of crouch, however the appropriate degree of correction and the implications for knee extensor function remain unclear. Therefore, the goal of this study was to assess the impact of patellar position on quadriceps and patellar tendon forces during normal and crouch gait. To this end, a lower extremity musculoskeletal model with a novel 12 degree of freedom knee joint was used to simulate normal gait in a healthy child, as well as mild (23 deg min knee flexion in stance), moderate (41 deg), and severe (67 deg) crouch gait in three children with cerebral palsy. The simulations revealed that quadriceps and patellar tendon forces increase dramatically with crouch, and are modulated by patellar position. For example with a normal patellar tendon position, peak patellar tendon forces were 0.7 times body weight in normal walking, but reached 2.2, 3.2 and 5.4 times body weight in mild, moderate and severe crouch. Moderate patella alta acted to reduce quadriceps and patellar tendon loads in crouch gait, due to an enhancement of the patellar tendon moment arms with alta in a flexed knee. In contrast, patella baja reduced the patellar tendon moment arm in a flexed knee and thus induced an increase in the patellar tendon loads needed to walk in crouch. Functionally, these results suggest that patella baja could also compromise knee extensor function for other flexed knee activities such as chair rise and stair climbing. The findings are important to consider when using surgical approaches for correcting patella alta in children who exhibit crouch gait patterns.


Assuntos
Paralisia Cerebral/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Patela/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Modelos Biológicos , Ligamento Patelar/fisiologia , Músculo Quadríceps/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA