Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(15): 1831-1845, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630607

RESUMO

Gain-of-function mutations in the signal transducer and activator of transcription 3 (STAT3) gene are recurrently identified in patients with large granular lymphocytic leukemia (LGLL) and in some cases of natural killer (NK)/T-cell and adult T-cell leukemia/lymphoma. To understand the consequences and molecular mechanisms contributing to disease development and oncogenic transformation, we developed murine hematopoietic stem and progenitor cell models that express mutated STAT3Y640F. These cells show accelerated proliferation and enhanced self-renewal potential. We integrated gene expression analyses and chromatin occupancy profiling of STAT3Y640F-transformed cells with data from patients with T-LGLL. This approach uncovered a conserved set of direct transcriptional targets of STAT3Y640F. Among these, strawberry notch homolog 2 (SBNO2) represents an essential transcriptional target, which was identified by a comparative genome-wide CRISPR/Cas9-based loss-of-function screen. The STAT3-SBNO2 axis is also present in NK-cell leukemia, T-cell non-Hodgkin lymphoma, and NPM-ALK-rearranged T-cell anaplastic large cell lymphoma (T-ALCL), which are driven by STAT3-hyperactivation/mutation. In patients with NPM-ALK+ T-ALCL, high SBNO2 expression correlates with shorter relapse-free and overall survival. Our findings identify SBNO2 as a potential therapeutic intervention site for STAT3-driven hematopoietic malignancies.


Assuntos
Neoplasias Hematológicas , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Quinase do Linfoma Anaplásico/metabolismo , Linhagem Celular Tumoral , Neoplasias Hematológicas/genética , Linfoma Anaplásico de Células Grandes/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Haematologica ; 108(4): 993-1005, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021603

RESUMO

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase/signal transducer and activator of transcription pathway, which is central in cytokine signaling. Previously, germline TYK2 mutations have been described in two patients developing de novo T-cell acute lymphoblastic leukemias (T-ALL) or precursor B-ALL. The mutations (P760L and G761V) are located within the regulatory pseudokinase domain and lead to constitutive activation of TYK2. We demonstrate the transformation capacity of TYK2 P760L in hematopoietic cell systems including primary bone marrow cells. In vivo engraftment of TYK2 P760L-expressing cell lines led to development of leukemia. A kinase inhibitor screen uncovered that oncogenic TYK2 acts synergistically with the PI3K/AKT/mTOR and CDK4/6 pathways. Accordingly, the TYK2-specific inhibitor deucravacitinib (BMS986165) reduces cell viability of TYK2 P760L-transformed cell models and ex vivo cultured TYK2 P760L-mutated patient- derived xenograft cells most efficiently when combined with mTOR or CDK4/6 inhibitors. Our study thereby pioneers novel treatment options for patients suffering from TYK2-driven acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , TYK2 Quinase , Humanos , Linhagem Celular , Quinase 4 Dependente de Ciclina , Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , TYK2 Quinase/genética , TYK2 Quinase/metabolismo
3.
Blood ; 138(23): 2347-2359, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320169

RESUMO

The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions, but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia, and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas/patologia , Leucemia/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Tetraspanina 29/metabolismo , Animais , Autorrenovação Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas
4.
Blood Adv ; 5(1): 39-53, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570624

RESUMO

Studies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (Lin-, Sca-1+, c-Kit+) cells, which closely resemble MPP1 cells. HPCLSKs reconstitute hematopoiesis in lethally irradiated recipient mice over >8 months. Upon transformation with different oncogenes including BCR/ABL, FLT3-ITD, or MLL-AF9, their leukemic counterparts maintain stem cell properties in vitro and recapitulate leukemia formation in vivo. The method to generate HPCLSKs can be applied to transgenic mice, and we illustrate it for CDK6-deficient animals. Upon BCR/ABLp210 transformation, HPCLSKsCdk6-/- induce disease with a significantly enhanced latency and reduced incidence, showing the importance of CDK6 in leukemia formation. Studies of the CDK6 transcriptome in murine HPCLSK and human BCR/ABL+ cells have verified that certain pathways depend on CDK6 and have uncovered a novel CDK6-dependent signature, suggesting a role for CDK6 in leukemic progenitor cell homing. Loss of CDK6 may thus lead to a defect in homing. The HPCLSK system represents a unique tool for combined in vitro and in vivo studies and enables the production of large quantities of genetically modifiable hematopoietic or leukemic stem/progenitor cells.


Assuntos
Proteínas de Fusão bcr-abl , Células-Tronco Hematopoéticas , Animais , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Haematologica ; 106(10): 2624-2632, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32855282

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors are considered a breakthrough in cancer therapy. Currently approved for breast cancer treatment, CDK4/6 inhibitors are extensively tested in other cancer subtypes. Frequently observed side effects include hematological abnormalities such as reduced numbers of neutrophils, erythroid cells and platelets that are associated with anemia, bleeding and a higher risk of infections. In order to understand whether the adverse effects within the hematopoietic system are related to CDK4 or CDK6 we generated transgenic mice that lack either CDK4 or CDK6 in adult hematopoiesis. Anemia and perturbed erythroid differentiation are associated with the absence of CDK6 but did not manifest in CDK4- deficient mice. Total CDK6 knockout mice accumulate the most dormant fraction of hematopoietic stem cells due to an impaired exit of the quiescent state. We recapitulated this finding by deleting CDK6 in adult hematopoiesis. In addition, unlike total CDK6 knockout, all stem cell fractions were affected and increased in numbers. The deletion of CDK6 was also accompanied by neutropenia which is frequently seen in patients receiving CDK4/6 inhibitors. This was not the case in the absence of CDK4; CDK4 deficiency resulted in elevated numbers of myeloid progenitors without translating into numeric changes of differentiated myeloid cells. By using Cdk4fl/fl and Cdk6fl/fl mice we assign side effects of CDK4/6 inhibitors predominantly to the absence of CDK6. These mice represent a novel and powerful tool that will enable to study the distinct functions of CDK4 and CDK6 in a tissue-dependent manner.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Células-Tronco Hematopoéticas , Animais , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Feminino , Deleção de Genes , Hematopoese/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos
6.
Leukemia ; 35(7): 1964-1975, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33168949

RESUMO

The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Transdução de Sinais/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Glucocorticoides/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteômica/métodos , Transcrição Gênica/genética , Regulação para Cima/genética
7.
Nat Commun ; 11(1): 4115, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807795

RESUMO

The transcription factor STAT3 is frequently activated in human solid and hematological malignancies and remains a challenging therapeutic target with no approved drugs to date. Here, we develop synthetic antibody mimetics, termed monobodies, to interfere with STAT3 signaling. These monobodies are highly selective for STAT3 and bind with nanomolar affinity to the N-terminal and coiled-coil domains. Interactome analysis detects no significant binding to other STATs or additional off-target proteins, confirming their exquisite specificity. Intracellular expression of monobodies fused to VHL, an E3 ubiquitin ligase substrate receptor, results in degradation of endogenous STAT3. The crystal structure of STAT3 in complex with monobody MS3-6 reveals bending of the coiled-coil domain, resulting in diminished DNA binding and nuclear translocation. MS3-6 expression strongly inhibits STAT3-dependent transcriptional activation and disrupts STAT3 interaction with the IL-22 receptor. Therefore, our study establishes innovative tools to interfere with STAT3 signaling by different molecular mechanisms.


Assuntos
Anticorpos/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Anticorpos/genética , Western Blotting , Calorimetria , Cristalografia por Raios X , Citometria de Fluxo , Polarização de Fluorescência , Imunofluorescência , Humanos , Espectrometria de Massas , Ligação Proteica , Domínios Proteicos/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Biologia Sintética
8.
Blood ; 136(4): 387-400, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32344427

RESUMO

Fusion proteins involving Nucleoporin 98 (NUP98) are recurrently found in acute myeloid leukemia (AML) and are associated with poor prognosis. Lack of mechanistic insight into NUP98-fusion-dependent oncogenic transformation has so far precluded the development of rational targeted therapies. We reasoned that different NUP98-fusion proteins deregulate a common set of transcriptional targets that might be exploitable for therapy. To decipher transcriptional programs controlled by diverse NUP98-fusion proteins, we developed mouse models for regulatable expression of NUP98/NSD1, NUP98/JARID1A, and NUP98/DDX10. By integrating chromatin occupancy profiles of NUP98-fusion proteins with transcriptome profiling upon acute fusion protein inactivation in vivo, we defined the core set of direct transcriptional targets of NUP98-fusion proteins. Among those, CDK6 was highly expressed in murine and human AML samples. Loss of CDK6 severely attenuated NUP98-fusion-driven leukemogenesis, and NUP98-fusion AML was sensitive to pharmacologic CDK6 inhibition in vitro and in vivo. These findings identify CDK6 as a conserved, critical direct target of NUP98-fusion proteins, proposing CDK4/CDK6 inhibitors as a new rational treatment option for AML patients with NUP98-fusions.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética
9.
Biomacromolecules ; 15(11): 4187-94, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25251833

RESUMO

Development of drug resistance is a central challenge to the treatment of ovarian cancer. Metronomic chemotherapy decreases the extent of drug-free periods, thereby hindering development of drug resistance. Intraperitoneal chemotherapy allows for treatment of tumors confined within the peritoneum, but achieving sustained tumor-localized chemotherapy remains difficult. We hypothesized that modulating the surface properties of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles could enhance their drug retention ability and extend their release profile, thereby enabling metronomic, localized chemotherapy in vivo. Paclitaxel was encapsulated in particles coated with a layer of polydopamine and a subsequent layer of poly(ethylene glycol) (PEG). These particles achieved a 3.8-fold higher loading content compared to that of nanoparticles formulated from linear PLGA-PEG copolymers. In vitro release kinetic studies and in vivo drug distribution profiles demonstrate sustained release of paclitaxel. Although free drug conferred no survival advantage, low-dose intraperitoneal administration of paclitaxel-laden surface-coated nanoparticles to drug-resistant ovarian tumor-bearing mice resulted in significant survival benefits in the absence of any apparent systemic toxicity.


Assuntos
Administração Metronômica , Modelos Animais de Doenças , Ácido Láctico/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Ácido Poliglicólico/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Ácido Láctico/química , Camundongos , Nanopartículas/química , Neoplasias Ovarianas/patologia , Paclitaxel/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície
10.
Retrovirology ; 11: 8, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24444350

RESUMO

BACKGROUND: A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. RESULTS: SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C'-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. CONCLUSION: Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter.


Assuntos
Síndrome da Imunodeficiência Adquirida/prevenção & controle , Anticorpos Neutralizantes/administração & dosagem , Proteção Cruzada , Anticorpos Anti-HIV/administração & dosagem , HIV-1/imunologia , Imunização Passiva/métodos , Imunoglobulina G/administração & dosagem , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Modelos Animais de Doenças , Macaca mulatta , Vírus da Imunodeficiência Símia/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...