Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174850

RESUMO

BACKGROUND: Undesirable side effects from wearing face masks during the ongoing COVID-19 pandemic continue to be discussed and pose a challenge to occupational health and safety when recommending safe application. Only few studies examined the effects of continuously wearing a face mask for more than one hour. Therefore, the influence of wearing a medical mask (MedMask) and a filtering facepiece class II respirator (FFP2) on the physiological and subjective outcomes in the course of 130 min of manual work was exploratively investigated. Physical work load and cardiorespiratory fitness levels were additionally considered as moderating factors. METHODS: Twenty-four healthy subjects (12 females) from three different cardiorespiratory fitness levels each performed 130 min of simulated manual work with light and medium physical workload using either no mask, a MedMask or FFP2. Heart rate, transcutaneous oxygen and carbon dioxide partial pressure (PtcO2, PtcCO2) as well as perceived physical exertion and respiratory effort were assessed continuously at discrete time intervals. Wearing comfort of the masks were additionally rated after the working period. RESULTS: There was no difference in time-dependent changes of physiological outcomes when using either a MedMask or a FFP2 compared to not wearing a mask. A stronger increase over time in perceived respiratory effort occurred when the face masks were worn, being more prominent for FFP2. Physical workload level and cardiorespiratory fitness level were no moderating factors and higher wearing comfort was rated for the MedMask. CONCLUSION: Our results suggest that using face masks during light and medium physical manual work does not induce detrimental side effects. Prolonged wearing episodes appeared to increase respiratory effort, but without affecting human physiology in a clinically relevant way.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35162087

RESUMO

The ongoing COVID-19 pandemic requires wearing face masks in many areas of our daily life; hence, the potential side effects of mask use are discussed. Therefore, the present study explores whether wearing a medical face mask (MedMask) affects physical working capacity (PWC). Secondary, the influence of a filtering facepiece mask with exhalation valve class 2 (FFP2exhal) and a cotton fabric mask (community mask) on PWC was also investigated. Furthermore, corresponding physiological and subjective responses when wearing face masks as well as a potential moderating role of subjects' individual cardiorespiratory fitness and sex on face mask effects were analyzed. Thirty-nine subjects (20 males, 19 females) with different cardiorespiratory fitness levels participated in a standardized submaximal bicycle ergometer protocol using either a MedMask, FFP2exhal, community mask, or no mask (control) on four days, in randomized order. PWC130 and PWC150 as the mechanical load at the heart rates of 130 and 150 beats per minute were measured as well as transcutaneous carbon dioxide partial pressure, saturation of peripheral capillary oxygen, breathing frequency, blood pressure, perceived respiratory effort, and physical exhaustion. Using the MedMask did not lead to changes in PWC or physiological response compared to control. Neither appeared changes exceeding normal ranges when the FFP2exhal or community mask was worn. Perceived respiratory effort was up to one point higher (zero-to-ten Likert scale) when using face masks (p < 0.05) compared to control. Sex and cardiorespiratory fitness were not factors influencing the effects of the masks. The results of the present study provide reason to believe that wearing face masks for infection prevention during the COVID-19 pandemic does not pose relevant additional physical demands on the user although some more respiratory effort is required.


Assuntos
COVID-19 , Pandemias , Ciclismo , Feminino , Humanos , Masculino , Máscaras , Desempenho Físico Funcional , SARS-CoV-2
3.
ChemSusChem ; 13(3): 556-563, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31794106

RESUMO

Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...