Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0168823, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747881

RESUMO

Staphylococcus aureus nitric oxide synthase (saNOS) contributes to oxidative stress resistance, antibiotic tolerance, virulence, and modulation of aerobic and nitrate-based cellular respiration. Despite its involvement in these essential processes, the genetic regulation of nos expression has not been well characterized. 5' rapid amplification of cDNA ends on nos RNA isolated from S. aureus UAMS-1 (USA200 strain) and AH1263 (USA300 strain) revealed that the nos transcriptional start site mapped to an adenine nucleotide in the predicted Shine-Dalgarno site located 11 bp upstream of the nos ATG start codon, suggesting that the nos transcript may have a leaderless organization or may be subject to processing. The SrrAB two-component system (TCS) was previously identified as a positive regulator of nos RNA levels, and experiments using a ß-galactosidase reporter plasmid confirmed that SrrAB is a positive regulator of nos promoter activity. In addition, the quorum-sensing system Agr was identified as a negative regulator of low-oxygen nos expression in UAMS-1, with activity epistatic to SrrAB. Involvement of Agr was strain dependent, as nos expression remained unchanged in an AH1263 agr mutant, which has higher Agr activity compared to UAMS-1. Furthermore, nos promoter activity and RNA levels were significantly stronger in AH1263 relative to UAMS-1 during late-exponential low-oxygen growth, when nos expression is maximal. Global regulators Rex and MgrA were also implicated as negative regulators of low-oxygen nos promoter activity in UAMS-1. Collectively, these results provide new insight into factors that control nos expression.IMPORTANCEBacterial nitric oxide synthase (bNOS) has recently emerged in several species as a key player in resistance to stresses commonly encountered during infection. Although Staphylococcus aureus (sa)NOS has been suggested to be a promising drug target in S. aureus, an obstacle to this in practice is the existence of mammalian NOS, whose oxygenase domain is like bacterial NOS. Increased understanding of the nos regulatory network in S. aureus could allow targeting of saNOS through its regulators, bypassing the issue of also inhibiting mammalian NOS. Furthermore, the observed strain-dependent differences in S. aureus nos regulation presented in this study reinforce the importance of studying bacterial NOS regulation and function at both the strain and species levels.

2.
Methods Mol Biol ; 2341: 45-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264460

RESUMO

This chapter describes the use of antibiotic kill curves to examine the tolerance of Staphylococcus aureus to any antibiotic of interest. This is done by treating cultures with a super-minimum inhibitory concentration (MIC) of antibiotic and measuring viability over time by colony-forming units (CFUs). Kill curves provide a unique insight into S. aureus antibiotic tolerance and death patterns that may not be clear from other experiments, such as traditional MIC or Kirby-Bauer assays.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Staphylococcus aureus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
3.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420450

RESUMO

Staphylococcus aureus nitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator of nos expression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiring nos mutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize a nos srrAB mutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. The nos srrAB mutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in the nos srrAB double mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limits S. aureus to fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. The nos, srrAB, and nos srrAB mutants showed comparable defects in endothelial intracellular survival, whereas the srrAB and nos srrAB mutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominant in vivo.


Assuntos
Proteínas de Bactérias , Óxido Nítrico Sintase/metabolismo , Proteínas Repressoras , Staphylococcus aureus , Virulência/fisiologia , Proteínas de Bactérias/genética , Células Cultivadas , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Estresse Oxidativo/fisiologia , Proteínas Repressoras/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Transcrição Gênica , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...