Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecosyst Serv ; 61: 1-16, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235205

RESUMO

Accounting for ecosystem services across expansive and diverse landscapes presents unique challenges to managers tasked with navigating and synthesizing the social-ecological dynamics of varied stakeholder interests and ecological functions. One approach to this challenge is through expert based matrices that provide valuations for specific service-habitat combinations. In this study, we combine a literature review with local expert input to build an ecosystem service capacity matrix for the Massachusetts Bays National Estuary Partnership (MassBays). We then apply this matrix to a custom conglomerate land cover data set and a habitat connectivity analysis to assess the spatial and temporal dynamics in select ecosystem services of coastal habitats across MassBays from 1996 to 2016. In 1996, saltmarsh was the primary provider of coastal ecosystem services, representing roughly 60% of the total service capacity. More specifically, high elevation saltmarsh was top-ranked, followed by tidal flats, seagrass, low elevation saltmarsh and unclassified saltmarsh. This distribution of service provisioning varied considerably among the five regions of MassBays, reflecting the unique habitat mixes and local expert valuations of each. Although saltmarsh dominated the overall production of services, seagrass and tidal flats drove 97% of the service changes that occurred from one year to the next. From 1996 to 2016, MassBays lost 50% of its seagrass cover and gained 20% more tidal flats, resulting in a 5% overall loss in ecosystem services. Again, this varied among the five regions, with Cape Cod losing as much as 12% of a given service while the Upper North Shore gained 4% in services overall. We bootstrapped the analysis to provide a range of probable outcomes. We also mapped the changes in service production for each of the sixty-eight embayments. This analysis will aid local managers in accounting for ecosystem services as they develop management plans for their represented stakeholders.

2.
Ecol Inform ; 77: 1-20, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38487338

RESUMO

The Massachusetts Bays National Estuary Partnership is one of 28 programs in the United States Environmental Protection Agency's National Estuary Program (NEP) charged with developing and implementing comprehensive plans for protecting and restoring the biological integrity and beneficial uses of their estuarine systems. The Partnership has recently updated their comprehensive management plan to include restoration targets for coastal habitats, and as part of this effort, the program explored how to better demonstrate that recovery of ecological integrity of degraded ecosystems also provides ecosystem services that humans want and need. An essential step was to identify key stakeholders and understand the benefits important to them. The primary objective of the study presented here was to evaluate variability in beneficial uses of estuarine habitats across coastal communities in Massachusetts Bays. We applied a text mining approach to extract ecosystem services concepts from over 1400 community planning documents. We leveraged a Final Ecosystem Goods and Services (FEGS) classification framework and related scoping tool to identify and prioritize the suite of natural resource users and ecosystem services those users care about, based on the relative frequency of mentions in documents. Top beneficiaries included residents, experiencers and viewers, property owners, educators and students, and commercial or recreational fishers. Beneficiaries had a surprising degree of shared interests, with top ecosystem services of broad relevance including for naturalness, fish and shellfish, water movement and navigability, water quality and quantity, aesthetic viewscapes, availability of land for development, flood mitigation, and birds. Community-level priorities that emerged were primarily related to regional differences, the local job industry, and local demographics. Identifying priority ecosystem services from community planning documents provides a starting point for setting locally-relevant restoration goals, designing projects that reflect what stakeholders care about, and supporting post-restoration monitoring in terms of accruing relevant benefits to local communities.

3.
Sci Adv ; 8(9): eabl9155, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235355

RESUMO

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

4.
Glob Chang Biol ; 27(24): 6423-6435, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469626

RESUMO

Tropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m2 . Following Hurricanes Irma and María in September 2017, the infrared heater warming treatment was suspended for repairs, which allowed us to explore potential legacy effects of prior warming on forest recovery. We found that warming significantly reduced root production and root biomass over time. Following hurricane disturbance, both root biomass and production increased substantially across all plots; the root biomass increased 2.8-fold in controls but only 1.6-fold in previously warmed plots. This pattern held true for both herbaceous and woody roots, suggesting that the consistent antecedent warming conditions reduced root capacity to recover following hurricane disturbance. Root production and mortality were both related to soil ammonium nitrogen and microbial biomass nitrogen before and after the hurricanes. This experiment has provided an unprecedented look at the complex interactive effects of disturbance and climate change on the root component of a tropical forested ecosystem. A decrease in root production in a warmer world and slower root recovery after a major hurricane disturbance, as observed here, are likely to have longer-term consequences for tropical forest responses to future global change.


Assuntos
Tempestades Ciclônicas , Biomassa , Mudança Climática , Ecossistema , Florestas , Solo , Árvores , Clima Tropical
5.
Front For Glob Change ; 4: 1-14, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118374

RESUMO

Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970-2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930-1970) at Cañno Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m-2 y-1 at the San José lagoon to 469 g m-2 y-1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y-1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y-1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

6.
Front For Glob Change ; 4: 1-765896, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-35059638

RESUMO

Tropical mangrove forests have been described as "coastal kidneys," promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 - 2016) and historic (1930 - 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g -2 y-1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g -2 y-1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha-1) was stored in the soils with 7.1 Mg ha-1 sequestered during 1970-2017 (0-18 cm) and 2.3 Mg ha-1 during 1930-1970 (19-28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha-1y-1) than historically (0.08 ± 0.001 Mg ha-1y-1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha-1 y-1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.

7.
Forests ; 11(10): 1119, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33365113

RESUMO

This study characterizes the structure and composition of mangrove forests across urban gradients in Puerto Rico. It then uses a suite of hydrologic, water chemistry, and land cover variables to test for the relative importance of urban intensity alongside flooding and water chemistry in explaining observed variability in forest structure and composition. Three separate statistical tests suggest a significant but limited influence of urbanness on forest composition and structure. In the most urban sites, the diameters of the largest trees were 27% larger, but all structural measurements were best explained by surface water chemistry, primarily nitrogen concentrations. Concentrations of ammonium and total Kjeldahl nitrogen best explained stem density, tree girth and canopy height. The most urban forests also contained 5.0 more species per hectare, on average, than the least urban forests, and simple regression suggests that urban metrics were the most powerful predictors of forest composition. The most urban forests were more dominated by Laguncularia racemosa, while both Avicennia germinans and Rhizophora mangle were found to be less abundant in the most urban sites, a trend that may be linked to the influence of precipitation and tidal connectivity on porewater salinity across the urban gradient. In multiple regression, no statistical difference was detected in the importance of surrounding land cover, flooding, or water quality in explaining the variance in either composition or structural metrics. This suggests that while a given forest metric may be strongly linked to either land cover, water quality, or flooding, all three are likely important and should be considered when characterizing these forests. With more human dependents in urban areas, the provisioning of important ecosystem services may be influenced by land use variables in addition to the more commonly measured metrics of water chemistry and flooding.

8.
Wetlands (Wilmington) ; 40(5): 1469-1480, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35783663

RESUMO

Mangroves are known to sequester carbon at rates exceeding even those of other tropical forests; however, to understand carbon cycling in these systems, soil-atmosphere fluxes and gas exchanges in mangrove-adjacent shallow waters need to be quantified. Further, despite the ever-increasing impact of development on mangrove systems, there is even less data on how subtropical, greenhouse gas (GHG) fluxes are affected by urbanization. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from mangrove soils and adjacent, coastal waters along a gradient of urbanization in the densely-populated, subtropical San Juan Bay Estuary (PR). Edaphic (salinity, pH, surface temperature) factors among sites significantly covaried with GHG fluxes. We found that mangrove systems in more highly-urbanized reaches of the estuary were characterized by relatively lower porewater salinities and substantially larger GHG emissions, particularly CH4, which has a high global warming potential. The magnitude of the CO2 emissions was similar in the mangrove soils and adjacent waters, but the CH4 emissions in the adjacent waters were an order of magnitude higher than in the soils and showed a marked response to urbanization. This study underscores the importance of considering GHG emissions of adjacent waters in carbon cycling dynamics in urbanized, tropical mangrove systems.

9.
Rev. biol. trop ; 64(2): 837-848, abr.-jun. 2016. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-843317

RESUMO

ResumenLas especies Echinometra lucunter, Echinometra viridis, Lytechinus variegatus, Tripneustes ventricosus, and Diadema antillarum son los erizos de mar más comunes en los hábitat litorales del Caribe. Los erizos de mar T. ventricosus y L. variegatus habitan generalmente los pastos marinos mientras que las otras tres especies se encuentran asociadas a sustratos rocosos. Los hábitos alimentarios de estas especies han sido bien documentados y son reconocidas como herbívoros - omnívoros; sin embargo, pocas de estas especies han sido caracterizadas isotópicamente. Utilizamos los isótopos estables para caracterizar estas cinco especies de erizos y establecer las posiciones tróficas para las especies que cohabitan los mismos ecosistemas. También cuantificamos la contribución de los recursos alimentarios para E. lucunter. Los erizos T. ventricosus y D. antillarum mostraron los mayores valores de δ15N y valores similares de δ13C que variaron desde -11.6 ± 0.63 a -10.4 ± 0.99 %; donde el erizo E. lucunter mostró los valores más negativos con -15.40 ± 0.76 %. Las comunidades de algas no mostraron diferencias en valores promedio de δ15N (F= 1.300, df= 3, p= 0.301), pero sí mostraron variaciones en los valores de δ13C (F= 7.410, df= 3, p= 0.001). Los estudios de amplitud de elipses de nicho determinaron que las especies de los biotopos rocosos (D. antillarum, E. lucunter y E. viridis) no mostraron solapamiento de nicho. Similar resultado también se encontró en las especies de erizos que habitan en los pastos marinos. Sin embargo, la distancia entre estas dos especies fue menor respecto a la distancia entre las especies de erizos que habitan en los sustratos rocosos. Nuestros resultados muestran que las especies que habitan en los pastos marinos mostraron valores más elevados de δ13C en comparación con las especies de los sustratos rocosos. No se encontraron diferencias espaciales para E. lucunter en δ15N, pero sí en δ13C. Los modelos de mezcla bayesianos demuestran la plasticidad alimentaria de E. lucunter, especie capaz de utilizar múltiples recursos algales dependiendo de la disponibilidad por sitio. Semejanzas en δ15N entre D. antillarum y T. ventricosus parecen indicar similitudes tróficas entre ambas especies. Si bien T. ventricosus es reconocido como omnívoro, D. antillarum siempre ha sido considerado un herbívoro generalista. Finalmente, la falta de solapamiento entre las especies en los dos biotopos parece indicar una estrategia de partición de recursos para evitar la competencia de nicho entre especies concurrentes.


AbstractThe species Echinometra lucunter, Echinometra viridis, Lytechinus variegatus, Tripneustes ventricosus, and Diadema antillarum are the most common sea urchins of littoral habitats in the Caribbean. T. ventricosus and L. variegatus are associated with seagrass beds, while the other three species usually inhabit hardground substrates. Food preferences of these species are well documented and they are commonly accepted as being primarily herbivorous-omnivorous; nevertheless, few of them have previously been characterized isotopically. We used this approach for assessing the isotopic characterization of five echinoids. We established the trophic position of two groups of co-occurring species and quantified the contribution of food resources in the diet of Echinometra lucunter, considered the most common sea urchin in the Caribbean region. The species T. ventricosus and D. antillarum showed the highest values of δ15N. Sea urchins exhibited similar values of δ13C varying from -11.6 ± 0.63 to -10.4 ± 0.99%. The echinoid E. lucunter displayed the lowest values of carbon, from -15.40 ± 0.76%. Significant differences among species were found for δ15N and δ13C. Seaweed communities exhibited no differences among sites for overall δ15N (F= 1.300, df= 3, p= 0.301), but we found spatial differences for δ13C (F= 7.410, df= 3, p= 0.001). The ellipse-based metrics of niche width analysis found that the hardground biotope species (D. antillarum, E. lucunter, and E. viridis) did not overlap each other. Similar results were obtained for the co-occurring species of the seagrass biotope; however, the distance between these species was closer than that of the hardground biotope species. The Bayesian mixing models run for E. lucunter at all four localities found differences in food resources contribution. The algae D. menstrualis, C. crassa and B. triquetrum dominated in CGD; whereas C. nitens, Gracilaria spp., and D. caribaea represented the main contributor algae to the diet of E. lucunter at LQY. In Culebra Island, no dominance of any particular algae was detected in TMD, where six of the eight species exhibited a similar contribution. Similarities in δ15N between D. antillarum and T. ventricosus may hint towards a similar trophic level for these species, although T. ventricosus is widely accepted as an omnivore, while D. antillarum is considered a generalist herbivore. The lack of overlap among species in the two biotopes seems to indicate a resource partitioning strategy to avoid niche competition among co-occurring species. Rev. Biol. Trop. 64 (2): 837-848. Epub 2016 June 01.


Assuntos
Animais , Ouriços-do-Mar/fisiologia , Ouriços-do-Mar/classificação , Teorema de Bayes , Densidade Demográfica , Região do Caribe , Cadeia Alimentar , Comportamento Alimentar/fisiologia
10.
Rev Biol Trop ; 64(2): 837-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29451972

RESUMO

The species Echinometra lucunter, Echinometra viridis, Lytechinus variegatus, Tripneustes ventricosus, and Diadema antillarum are the most common sea urchins of littoral habitats in the Caribbean. T. ventricosus and L. variegatus are associated with seagrass beds, while the other three species usually inhabit hardground substrates. Food preferences of these species are well documented and they are commonly accepted as being primarily herbivorous-omnivorous; nevertheless, few of them have previously been characterized isotopically. We used this approach for assessing the isotopic characterization of five echinoids. We established the trophic position of two groups of co-occurring species and quantified the contribution of food resources in the diet of Echinometra lucunter, considered the most common sea urchin in the Caribbean region. The species T. ventricosus and D. antillarum showed the highest values of δ15N. Sea urchins exhibited similar values of δ13C varying from -11.6 ± 0.63 to -10.4 ± 0.99%. The echinoid E. lucunter displayed the lowest values of carbon, from -15.40 ± 0.76%. Significant differences among species were found for δ15N and δ13C. Seaweed communities exhibited no differences among sites for overall δ15N (F= 1.300, df= 3, p= 0.301), but we found spatial differences for δ13C (F= 7.410, df= 3, p= 0.001). The ellipse-based metrics of niche width analysis found that the hardground biotope species (D. antillarum, E. lucunter, and E. viridis) did not overlap each other. Similar results were obtained for the co-occurring species of the seagrass biotope; however, the distance between these species was closer than that of the hardground biotope species. The Bayesian mixing models run for E. lucunter at all four localities found differences in food resources contribution. The algae D. menstrualis, C. crassa and B. triquetrum dominated in CGD; whereas C. nitens, Gracilaria spp., and D. caribaea represented the main contributor algae to the diet of E. lucunter at LQY. In Culebra Island, no dominance of any particular algae was detected in TMD, where six of the eight species exhibited a similar contribution. Similarities in δ15N between D. antillarum and T. ventricosus may hint towards a similar trophic level for these species, although T. ventricosus is widely accepted as an omnivore, while D. antillarum is considered a generalist herbivore. The lack of overlap among species in the two biotopes seems to indicate a resource partitioning strategy to avoid niche competition among co-occurring species.


Assuntos
Ouriços-do-Mar/fisiologia , Animais , Teorema de Bayes , Região do Caribe , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Densidade Demográfica , Ouriços-do-Mar/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...