Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3376, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643246

RESUMO

We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250 °C. Our results show that electrostatic control allows the thermal emission at 6.61 µm to be continuously steered over 16°, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures.

2.
Nano Lett ; 23(15): 6852-6858, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499230

RESUMO

Laser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail. We explore potential mitigation strategies, including increasing the in-plane thermal conductivity of the sail to reduce the peak temperature at hot spots and isolating the absorptive regions of the sail that can burn away individually.

3.
ACS Nano ; 14(1): 1166-1175, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904220

RESUMO

Dynamic high-resolution wavefront modulation of light is a long-standing quest in photonics. Metasurfaces have shown potential for realizing light manipulation with subwavelength resolution through nanoscale optical elements, or metaatoms, to overcome the limitations of conventional spatial light modulators. State-of-the-art active metasurfaces operate via phase modulation of the metaatoms, and their inability to also independently control the scattered amplitude leads to an inferior reconstruction of the desired wavefronts. This fundamental problem posed severe performance limitations particularly for applications relying on subwavelength spatiotemporal complex field modulation, which includes dynamic holography, high-resolution imaging, optical tweezing, and optical information processing. Here, we present the "metamolecule" strategy, which incorporates two independent subwavelength scatterers composed of noble metal antennas coupled to gate-tunable graphene plasmonic nanoresonators. The two-parametric control of the metamolecule secures the complete control of both amplitude and phase of light, enabling 2π phase shift as well as large amplitude modulation including perfect absorption. We further develop a generalized graphical model to examine the underlying requirements for complete complex amplitude modulation, offering intuitive design guidelines to maximize the tunability in metasurfaces. To illustrate the reconfigurable capability of our designs, we demonstrate dynamic beam steering and holographic wavefront reconstruction in periodically arranged metamolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...