Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 18(1): 38, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098635

RESUMO

Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.

2.
Plants (Basel) ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501370

RESUMO

Varroa destructor is a parasitic mite, which is considered a severe pest for honey bees causing serious losses to beekeeping. Residual hydrolats from steam extraction of hop essential oils, generally considered as a waste product, were tested for their potential use as acaricides on V. destructor. Four hop varieties, namely Cascade, Spalt, Victoria, and Mapuche, showed an interesting performance as feasible products to be used in the beekeeping industry. Some volatile oxidized terpenoids were found in the hydrolats, mainly ß-caryophyllene oxide, ß-linalool, and isogeraniol. These compounds, together with the presence of polyphenols, flavonoids, and saponins, were probably responsible for the promissory LC50 values obtained for mites after hydrolat exposition. Victoria hydrolat was the most toxic for mites (LC50: 16.1 µL/mL), followed by Mapuche (LC50 value equal to 30.1 µL/mL), Spalt (LC50 value equal to 114.3 µL/mL), and finally Cascade (LC50: 117.9 µL/mL). Likewise, Spalt had the highest larval survival, followed by Victoria and Mapuche. Cascade was the variety with the highest larval mortality. In addition, none of the extracts showed mortality higher than 20% in adult bees. The Victoria hydrolat presented the best results, which makes it a good compound with the prospect of an acaricide treatment against V. destructor.

3.
Genetica ; 149(5-6): 343-350, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34698977

RESUMO

Analysis of the mtDNA variation in Apis mellifera L. has allowed distinguishing subspecies and evolutionary lineages by means of different molecular methods; from RFLP, to PCR-RFLP and direct sequencing. Likewise, geometric morphometrics (GM) has been used to distinguish Africanized honey bees with a high degree of consistency with studies using molecular information. High-resolution fusion analysis (HRM) allows one to quickly identify sequence polymorphisms by comparing DNA melting curves in short amplicons generated by real-time PCR (qPCR). The objective of this work was to implement the HRM technique in the diagnosis of Africanization of colonies of A. mellifera from Argentina, using GM as a validation method. DNA was extracted from 60 A. mellifera colonies for mitotype identification. Samples were initially analyzed by HRM, through qPCRs of two regions (485 bp/385 bp) of the mitochondrial cytochrome b gene (cytb). This technique was then optimizing to amplify a smaller PCR product (207 bp) for the HRM diagnosis for the Africanization of colonies. Of the 60 colony samples analyzed, 41 were classified as colonies of European origin whereas 19 revealed African origin. All the samples classified by HRM were correctly validated by GM, demonstrating that this technique could be implemented for a rapid identification of African mitotypes in Apis mellifera samples.


Assuntos
Abelhas/classificação , Abelhas/genética , DNA Mitocondrial/genética , Filogenia , Animais , Citocromos b/genética , Evolução Molecular , Genes Mitocondriais/genética , Desnaturação de Ácido Nucleico , Reprodutibilidade dos Testes
4.
Arch Virol ; 166(6): 1533-1545, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683476

RESUMO

Beekeeping is a widespread activity in Argentina, mainly producing honey that has gained both national and international recognition. There are more than 3,000,000 hives in the country, mainly concentrated in Buenos Aires Province (approximately 1,000,000 hives). In recent decades, worrying rates of hive loss have been observed in many countries around the world. In Latin America, the estimated loss of hives is between 13% (Peru and Ecuador) and 53% (Chile). Argentina had annual losses of 34% for the period of October 1, 2016 to October 1, 2017. The causes of these losses are not clear but probably involve multiple stressors that can act simultaneously. One of the main causes of loss of bee colonies worldwide is infestation by the ectoparasitic mite Varroa destructor in combination with viral infections. To date, 10 viruses have been detected that affect honey bees (Apis mellifera) in Argentina. Of these, deformed wing virus, sacbrood virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute bee paralysis can be transmitted by mites. Deformed wing virus and the AIK complex are the viruses most often associated with loss of hives worldwide. Considering that bee viruses have been detected in Argentina in several hymenopteran and non-hymenopteran insects, these hosts could act as important natural reservoirs for viruses and play an important role in their dispersal in the environment. Further studies to investigate the different mechanisms by which viruses spread in the environment will enable us to develop various strategies for the control of infected colonies and the spread of viruses in the habitat where they are found.


Assuntos
Abelhas/virologia , Animais , Argentina , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Interações Hospedeiro-Patógeno , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação
5.
Parasitol Int ; 81: 102244, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33217549

RESUMO

Lotmaria passim (Kinetoplastea) is considered the most prevalent as well as the most virulent trypanosomatid associated to the European honey bee Apis mellifera. We used qPCR to screen for the presence of this parasite in 57 samples from ten Argentinian provinces, and were able to detect its presence throughout most of the country with 41% of the samples testing positive. In a retrospective analysis, we detected L. passim in 73% of honey bee samples from 2006 showing that this flagellate has been widely present in Argentina for at least ~15 years. Additionally, three primer sets for L. passim detection were compared, with the pair that produced smallest PCR product having the best detection capability. Finally, we also found L. passim DNA in 100% (n = 6) of samples of the mite Varroa destructor. The role of this ectoparasite in the lifecycle of Lotmaria, if any, remains unrevealed.


Assuntos
Abelhas/parasitologia , Trypanosomatina/isolamento & purificação , Animais , Argentina
6.
Arch Virol ; 165(9): 2053-2056, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556548

RESUMO

Chronic bee paralysis virus (CBPV) is a positive single-stranded RNA virus that exhibits a worldwide distribution. Although the effects of this virus on honeybees' health are well known, its presence in other bee species has not been fully studied. In this work, CBPV was detected in several native bees from Argentina, including Bombus pauloensis, Halictillus amplilobus, Peponapis fervens, and members of the genus Xylocopa. Here, we report for the first time the presence of CBPV in native bees from South America.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de RNA/isolamento & purificação , Animais , Argentina , Abelhas/classificação , Vírus de Insetos/classificação , Vírus de Insetos/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética
7.
Parasitol Res ; 113(2): 701-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24288051

RESUMO

A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 µg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) µg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.


Assuntos
Acaricidas/farmacologia , Anti-Infecciosos/farmacologia , Abelhas/microbiologia , Abelhas/parasitologia , Laurus/química , Extratos Vegetais/farmacologia , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nosema/efeitos dos fármacos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Paenibacillus/efeitos dos fármacos , Folhas de Planta/química , Varroidae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...