Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 56: 100-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26857983

RESUMO

Butterflies regulate their internal thoracic temperature in order to optimize performance activities (e.g. flight, foraging). Previous research has shown that butterfly wings, particularly the innermost portions, play a role in thermoregulation. We investigated to see whether a lightly colored wing band would alter the thermal properties of the banded peacock butterfly (Anartia fatima) with two within subject experiments in a laboratory setting: (1) band color manipulation in which euthanized individuals were heated to thermal equilibrium with the band unaltered and then again with the wing darkened; (2) wing ablation in which individuals already run through experiment 1 were heated to equilibrium two more times; once with the outer portion of the wing including the band removed and then with the entire wing removed. Individuals were spread so that the dorsal surface of the wing was exposed to illumination from a lamp suspended above. Twelve Anartia fatima males were collected in Panama and were run through experiment one. Four individuals were run through experiment two. We found no effect of darkening the band on the internal thoracic equilibrium temperature, but the darkened band did increase the rate of heating. The wing ablation experiment revealed that wing removal lowered the internal thoracic equilibrium temperature but did not affect the heating rate. Therefore we show that butterfly bands may be important in butterfly thermoregulation and we discuss the importance of the wing band on thermoregulatory abilities in Anartia fatima with respect to the butterfly's natural history. We conclude that the wing band may allow butterflies to reduce heat stress induced by their warm environments.


Assuntos
Regulação da Temperatura Corporal , Temperatura Corporal , Borboletas/fisiologia , Asas de Animais/fisiologia , Animais , Calefação , Masculino , Pigmentação , Temperatura
2.
Artigo em Inglês | MEDLINE | ID: mdl-26113382

RESUMO

Facultative thermogenesis is often attributed to pythons in general despite limited comparative data available for the family. While all species within Pythonidae brood their eggs, only two species are known to produce heat to enhance embryonic thermal regulation. By contrast, a few python species have been reported to have insignificant thermogenic capabilities. To provide insight into potential phylogenetic, morphological, and ecological factors influencing thermogenic capability among pythons, we measured metabolic rates and clutch-environment temperature differentials at two environmental temperatures-python preferred brooding temperature (31.5 °C) and a sub-optimal temperature (25.5 °C)-in six species of pythons, including members of two major phylogenetic branches currently devoid of data on the subject. We found no evidence of facultative thermogenesis in five species: Aspidites melanocephalus, A. ramsayi, Morelia viridis, M. spilota cheynei, and Python regius. However, we found that Bothrochilus boa had a thermal metabolic sensitivity indicative of facultative thermogenesis (i.e., a higher metabolic rate at the lower temperature). However, its metabolic rate was quite low and technical challenges prevented us from measuring temperature differential to make conclusions about facultative endothermy in this species. Regardless, our data combined with existing literature demonstrate that facultative thermogenesis is not as widespread among pythons as previously thought.


Assuntos
Boidae/fisiologia , Termogênese , Animais , Feminino , Consumo de Oxigênio/fisiologia , Reprodução , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA