Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Biol Anthropol ; 180(1): 48-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790648

RESUMO

OBJECTIVES: The aim of this study is to assess a new assemblage of papionin fossils (n = 143) recovered from later Pleistocene sediments in the Middle Awash study area in the Afar Rift of Ethiopia. MATERIALS AND METHODS: We collected metric and qualitative data to compare the craniodental and postcranial anatomy of the papionin fossils with subspecies of modern Papio hamadryas and with Plio-Pleistocene African papionins. We also estimated sex and ontogenetic age. RESULTS: The new fossils fit well within the range of morphological variation observed for extant P. hamadryas, overlapping most closely in dental size and proportions with the P. h. cynocephalus individuals in our extant samples, and well within the ranges of P. h. anubis and P. h. hamadryas. The considerable overlap in craniodental anatomy with multiple subspecies precludes subspecific diagnosis. We therefore referred 143 individuals to P. hamadryas ssp. The majority of the individuals assessed for ontogenetic age fell into middle- and old-adult age categories based on the degree of dental wear. Males (26%) were better represented than females (12%) among individuals preserving the canine-premolar honing complex. DISCUSSION: These new near-modern P. hamadryas fossils provide a window into population-level variation in the later Pleistocene. Our findings echo previous suggestions from genomic studies that the papionin family tree may have included a ghost population and provide a basis for future testing of hypotheses regarding hybridization in the recent evolutionary history of this taxon.


Assuntos
Fósseis , Papio hamadryas , Masculino , Animais , Feminino , Etiópia , Evolução Biológica
2.
Proc Natl Acad Sci U S A ; 119(41): e2200689119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191229

RESUMO

Evidence of how gestational parameters evolved is essential to understanding this fundamental stage of human life. Until now, these data seemed elusive given the skeletal bias of the fossil record. We demonstrate that dentition provides a window into the life of neonates. Teeth begin to form in utero and are intimately associated with gestational development. We measured the molar dentition for 608 catarrhine primates and collected data on prenatal growth rate (PGR) and endocranial volume (ECV) for 19 primate genera from the literature. We found that PGR and ECV are highly correlated (R2 = 0.93, P < 0.001). Additionally, we demonstrated that molar proportions are significantly correlated with PGR (P = 0.004) and log-transformed ECV (P = 0.001). From these correlations, we developed two methods for reconstructing PGR in the fossil record, one using ECV and one using molar proportions. Dental proportions reconstruct hominid ECV (R2 = 0.81, P < 0.001), a result that can be extrapolated to PGR. As teeth dominate fossil assemblages, our findings greatly expand our ability to investigate life history in the fossil record. Fossil ECVs and dental measurements from 13 hominid species both support significantly increasing PGR throughout the terminal Miocene and Plio-Pleistocene, reflecting known evolutionary changes. Together with pelvic and endocranial morphology, reconstructed PGRs indicate the need for increasing maternal energetics during pregnancy over the last 6 million years, reaching a human-like PGR (i.e., more similar to humans than to other extant apes) and ECV in later Homo less than 1 million years ago.


Assuntos
Evolução Biológica , Hominidae , Animais , Feminino , Fósseis , Hominidae/anatomia & histologia , Humanos , Recém-Nascido , Dente Molar , Gravidez
3.
Biology (Basel) ; 11(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36009845

RESUMO

Advances in genetics and developmental biology are revealing the relationship between genotype and dental phenotype (G:P), providing new approaches for how paleontologists assess dental variation in the fossil record. Our aim was to understand how the method of trait definition influences the ability to reconstruct phylogenetic relationships and evolutionary history in the Cercopithecidae, the Linnaean Family of monkeys currently living in Africa and Asia. We compared the two-dimensional assessment of molar size (calculated as the mesiodistal length of the crown multiplied by the buccolingual breadth) to a trait that reflects developmental influences on molar development (the inhibitory cascade, IC) and two traits that reflect the genetic architecture of postcanine tooth size variation (defined through quantitative genetic analyses: MMC and PMM). All traits were significantly influenced by the additive effects of genes and had similarly high heritability estimates. The proportion of covariate effects was greater for two-dimensional size compared to the G:P-defined traits. IC and MMC both showed evidence of selection, suggesting that they result from the same genetic architecture. When compared to the fossil record, Ancestral State Reconstruction using extant taxa consistently underestimated MMC and PMM values, highlighting the necessity of fossil data for understanding evolutionary patterns in these traits. Given that G:P-defined dental traits may provide insight to biological mechanisms that reach far beyond the dentition, this new approach to fossil morphology has the potential to open an entirely new window onto extinct paleobiologies. Without the fossil record, we would not be able to grasp the full range of variation in those biological mechanisms that have existed throughout evolution.

4.
Res Sports Med ; 30(5): 516-528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33906546

RESUMO

The aim of this study was to investigate whether body proportions change as stature increases in elite Spanish athletes. The sample includes a total of 2,030 participants, comprised of 1,357 adult males, and 673 adult females. The male athletes were classified into five groups by stature, and the female athletes were classified separately into four stature groups. Ten anthropometric measurements were collected, and eleven body proportions were calculated. The body proportions with significant differences between stature groups in males were relative arm length (0.53-1.60%), relative forearm length (0.69-2.08%), relative thigh length (1.17-1.56%), relative tibial length (1.37-6.39%), cormic index (-0.94 - -4.49%), Manouvrier index (1.60-9.60%), and crural index (1.05-4.79%). In females, the body proportions with significant differences were relative forearm length (1.43%), relative thigh length (1.94-3.88%), relative tibial length (2.74-4.56%), cormic index (-0.74 - -3.72%), and Manouvrier index (1.97-8.71%). The distal parts of the upper and lower limbs increase proportionally as stature increases, whereas relative hand and foot lengths, which are the most distal parts of the extremities, remain constant in elite athletes.


Assuntos
Atletas , Estatura , Adulto , Antropometria , Feminino , Mãos , Humanos , Perna (Membro) , Masculino
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873047

RESUMO

The Halibee member of the Upper Dawaitoli Formation of Ethiopia's Middle Awash study area features a wealth of Middle and Later Stone Age (MSA and LSA) paleoanthropological resources in a succession of Pleistocene sediments. We introduce these artifacts and fossils, and determine their chronostratigraphic placement via a combination of established radioisotopic methods and a recently developed dating method applied to ostrich eggshell (OES). We apply the recently developed 230Th/U burial dating of OES to bridge the temporal gap between radiocarbon (14C) and 40Ar/39Ar ages for the MSA and provide 14C ages to constrain the younger LSA archaeology and fauna to ∼24 to 21.4 ka. Paired 14C and 230Th/U burial ages of OES agree at ∼31 ka for an older LSA locality, validating the newer method, and in turn supporting its application to stratigraphically underlying MSA occurrences previously constrained only by a maximum 40Ar/39Ar age. Associated fauna, flora, and Homo sapiens fossils are thereby now fixed between 106 ± 20 ka and 96.4 ± 1.6 ka (all errors 2σ). Additional 40Ar/39 results on an underlying tuff refine its age to 158.1 ± 11.0 ka, providing a more precise minimum age for MSA lithic artifacts, fauna, and H. sapiens fossils recovered ∼9 m below it. These results demonstrate how chronological control can be obtained in tectonically active and stratigraphically complex settings to precisely calibrate crucial evidence of technological, environmental, and evolutionary changes during the African Middle and Late Pleistocene.

6.
Naturwissenschaften ; 107(5): 40, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870408

RESUMO

Paleontology has long relied on assumptions about the genetic and developmental influences on skeletal variation. The last few decades of developmental genetics have elucidated the genetic pathways involved in making teeth and patterning the dentition. Quantitative genetic analyses have refined this genotype:phenotype map even more, especially for primates. We now have the ability to define dental traits with a fair degree of fidelity to the underlying genetic architecture; for example, the molar module component (MMC) and the premolar-molar module (PMM) that have been defined through quantitative genetic analyses. We leverage an extensive dataset of extant and extinct hominoid dental variation to explore how these two genetically patterned phenotypes have evolved through time. We assess MMC and PMM to test the hypothesis that these two traits reveal a more biologically informed taxonomy at the genus and species levels than do more traditional measurements. Our results indicate that MMC values for hominids fall into two categories and that Homo is derived compared with earlier taxa. We find a more variable, species-level pattern for PMM. These results, in combination with previous research, demonstrate that MMC reflects the phenotypic output of a more evolutionarily stable, or phylogenetically congruent, genetic mechanism, and PMM is a reflection of a more evolutionarily labile mechanism. These results suggest that the human lineage since the split with chimpanzees may not represent as much genus-level variation as has been inferred from traits whose etiologies are not understood.


Assuntos
Dentição , Fósseis/anatomia & histologia , Hominidae/classificação , Hominidae/genética , Filogenia , Animais , Genótipo , Humanos , Fenótipo
7.
Int J Legal Med ; 134(6): 2289-2296, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32572614

RESUMO

In forensic anthropology, generic equations are generally preferred for estimation of stature. However, recent studies have demonstrated that regression equations specific to stature groups yield more accurate predictions. Almost all previous studies have been conducted on male subjects, and it is not currently known how well such equations work for females. Therefore, this study aims to test whether regression equations specific to stature groups work for females as well. To this end, a cross-sectional study was conducted to estimate stature on a sample of 351 Spanish adult females. The participants were randomized into a calibration group (n = 185) and a validation group (n = 166). Equations for stature estimation based on tibial length were developed in the calibration group, which was categorized according to stature (short, medium, and tall) using the 15th and 85th percentiles as cut-off points. The standard errors of the estimations (SEEs) for the group-specific regression equations (SEE = 2.35-2.66 cm) were lower than for the general formula derived for all participants of the calibration group (SEE = 3.46 cm). The specific equations resulted in smaller differences between estimated and recorded statures than the generic equation when we tested the equations with the validation group. Additionally, the SEE values of the stature-specific equations are lower compared to generic equations applied to other human populations. In conclusion, the group-specific equations from tibial length have high accuracy compared with previously derived equations for Spanish females and other populations. This procedure for estimating stature thereby improves the tools available to forensic scientists.


Assuntos
Antropometria/métodos , Estatura , Antropologia Forense/métodos , Tíbia/anatomia & histologia , Adulto , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Regressão , Espanha
8.
Ecol Evol ; 9(13): 7597-7612, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346425

RESUMO

The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.

9.
Proc Natl Acad Sci U S A ; 113(33): 9262-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27402751

RESUMO

Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.


Assuntos
Evolução Biológica , Genética , Paleontologia , Papio hamadryas/genética , Dente/anatomia & histologia , Animais , Feminino , Masculino , Camundongos , Papio hamadryas/anatomia & histologia , Papio hamadryas/classificação , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA