Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 76(3): 724-35, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637668

RESUMO

MLK4 is a member of the mixed-lineage family of kinases that regulate the JNK, p38, and ERK kinase signaling pathways. MLK4 mutations have been identified in various human cancers, including frequently in colorectal cancer, where their function and pathobiological importance have been uncertain. In this study, we assessed the functional consequences of MLK4 mutations in colon tumorigenesis. Biochemical data indicated that a majority of MLK4 mutations are loss-of-function (LOF) mutations that can exert dominant-negative effects. In seeking to understand the abrogated activity of these mutants, we elucidated a new MLK4 catalytic domain structure. To determine whether MLK4 is required to maintain tumorigenic phenotypes, we reconstituted its signaling axis in colon cancer cells harboring MLK4-inactivating mutations. We found that restoring MLK4 activity reduced cell viability, proliferation, and colony formation in vitro and delayed tumor growth in vivo. Mechanistic investigations established that restoring the function of MLK4 selectively induced the JNK pathway and its downstream targets, cJUN, ATF3, and the cyclin-dependent kinase inhibitors CDKN1A and CDKN2B. Our work indicates that MLK4 is a novel tumor-suppressing kinase harboring frequent LOF mutations that lead to diminished signaling in the JNK pathway and enhanced proliferation in colon cancer.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Animais , Carcinogênese , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Adv ; 1(7): e1500315, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26601230

RESUMO

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a ß-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 µM] and neutral (K D of ~252 µM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

3.
J Med Chem ; 58(5): 2265-74, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25695162

RESUMO

Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1/química , Bibliotecas de Moléculas Pequenas/química
4.
PLoS One ; 7(12): e50889, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251397

RESUMO

Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.


Assuntos
Domínio Catalítico , Glicosídeo Hidrolases/química , Biologia Computacional , Humanos , Conformação Proteica , Relação Estrutura-Atividade
5.
J Med Chem ; 55(7): 3285-306, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22417091

RESUMO

Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.


Assuntos
L-Lactato Desidrogenase/antagonistas & inibidores , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios Enzimáticos , Humanos , Isoenzimas/antagonistas & inibidores , Lactato Desidrogenase 5 , Espectroscopia de Ressonância Magnética , Malonatos/síntese química , Malonatos/química , Malonatos/farmacologia , Modelos Moleculares , Estrutura Molecular , Niacinamida/química , Ácido Oxâmico/análogos & derivados , Ácido Oxâmico/síntese química , Ácido Oxâmico/química , Ácido Oxâmico/farmacologia , Ligação Proteica , Ratos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
6.
Bioorg Med Chem Lett ; 18(20): 5487-92, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18815031

RESUMO

An imidazole series of cyclin-dependent kinase (CDK) inhibitors has been developed. Protein inhibitor structure determination has provided an understanding of the emerging structure activity trends for the imidazole series. The introduction of a methyl sulfone at the aniline terminus led to a more orally bioavailable CDK inhibitor that was progressed into clinical development.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Imidazóis/química , Compostos de Anilina/química , Animais , Proteínas de Ciclo Celular/química , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Conformação Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...