Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 102(24): 245101, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19659020

RESUMO

Coherent terahertz high-harmonic radiation has been obtained in a gyrotron with an axis-encircling electron beam. An electron-optical system with a cusp gun and a following drift section of adiabatic magnetic compression with an area factor of 3000 provides the formation of an 80-keV/0.7-A beam of gyrating electrons in a wide range of voltages and magnetic fields. Stable single-mode generation with a power of 0.3-1.8 kW in microsecond pulses is detected at four frequencies in the range 0.55-1.00 THz at resonant magnetic fields 10.5-14 T.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(4 Pt 2): 046402, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15600525

RESUMO

Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared.

3.
Phys Rev Lett ; 92(11): 118301, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15089178

RESUMO

A new method to generate ultrahigh-power microwave pulses compatible with mildly relativistic electron sources is proposed. This method involves a novel microwave compressor in the form of a metal helically corrugated waveguide, which can enhance the power of frequency-modulated nanosecond pulses up to the multigigawatt level. The results of the proof-of-principle experiments at kilowatt power levels are in good agreement with theory.

4.
Artigo em Inglês | MEDLINE | ID: mdl-11969591

RESUMO

A high-power, frequency-tunable electrostatic free-electron maser, being developed at the FOM Institute for Plasma Physics "Rijnhuizen," shows lasing at various frequencies. An output power of 730 kW at 206 GHz is generated by a 7.2-A, 1.77-MeV electron beam, and 380 kW at 165 GHz is generated by a 7.4-A, 1.65-MeV electron beam. In the present experimental setup, without recovery of the spent electron beam power, the pulse length is limited to 12 micros. Nevertheless, the main issues, such as the possibility of high-power, single-mode operation and frequency tuning, have been confirmed. The experimental results and the dynamics of the laser process are well in accordance with simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...