Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119507, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33578124

RESUMO

We report on the localization of the initially excited electronic state within the molecular framework of a series of [Ru(bpy)2dppz]2+ derivatives (bpy:2,2'-bipyridine, dppz: dipyrido-phenazine) as sensitizers in NiO based photocathodes. The introduction of conjugated linkers with phenylene and triazole moieties in the bpy ligand sphere separates the NiO surface from the metal center and hence is considered to stabilize the charge separated state, which results from light-driven hole injection. However, introduction of the conjugated linkers also alters the localization of the excess electron density in the excited state within the ligand sphere and impacts the extent to which the charge-separated state is formed. The study emphasizes that tuning the ligand with the lowest-energy π* orbital distal or proximal to the NiO surface significantly affects the initial charge-separation and the solar cell performance. The stability of the charge-separated state correlates with the observed photocurrents in dye-sensitized solar cells. Furthermore, the study challenges the widely accepted concept that the introduction of extended anchoring groups, i.e. increasing Ru - NiO distance, stabilizes the charge-separated state and suppresses charge recombination at the metal-oxide molecule interface.

2.
Dalton Trans ; 45(22): 9216-28, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27172842

RESUMO

, a series of rhenium(i) tricarbonyl chloride complexes with bpy-R2 derivatives (bpy = 2,2'-bipyridine, R represents the substitution at the 4- and 4'-positions), and their corresponding trishomoleptic as well as heteroleptic ruthenium(ii) complexes and have been synthesized and characterized. Their applicability as immobilizable metal-organic chromophores in solar and photosynthesis cells is enabled by R, since it includes phosphonic ester groups as precursors for potent phosphonate anchoring groups. Conjugated linkers (phenylene and triazole moieties) serve as distance control between bpy and the anchor. Photophysical and electrochemical studies reveal pronounced effects of the aryl substitution. These effects were further investigated using resonance Raman experiments and supported by theoretical calculations. After hydrolysis the triazole containing was successfully immobilized on NiO, suggesting that its application in photovoltaic cells is feasible. The solid state structures of , , and are reported in this paper, enabling the determination of the distances and intermolecular interactions.

3.
Photochem Photobiol Sci ; 15(1): 69-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661372

RESUMO

Titania of fine anatase nanoparticles (ST01) was modified successively with two components, i.e., a ruthenium(II) complex with phosphonic anchoring groups [Ru(bpy)2(4,4'-(CH2PO3H2)2bpy)](2+) bpy = 2,2'-bipyridine (Ru(II)CP) and gold nanoparticles (Au). Various compositions of two titania modifiers were investigated, i.e., Au, Au + Ru(II)CP, Au + 0.5Ru(II)CP, Ru(II)CP, 0.5Ru(II)CP and 0.25Ru(II)CP, where Au and Ru(II)CP correspond to 0.81 mol% and 0.34 mol% (with respect to titania), respectively. In the case of hybrid photocatalysts, the sequence of modification (ruthenium(II) complex adsorption or gold deposition) was investigated to check its influence on the resultant properties and thus photocatalytic performance. Diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) were applied to characterize the structural properties of the prepared photocatalysts, which confirmed the successful introduction of modifiers of the ruthenium(II) complex and/or gold NPs. Different distributions of gold particle sizes and chemical compositions were obtained for the hybrid photocatalysts prepared with an opposite sequence. It was found that photocatalytic activities depended on the range of used irradiation (UV/vis or vis) and the kind of modifier in different ways. Gold NPs improved the photocatalytic activities, while Ru(II)CP inhibited the reactions under UV/vis irradiation, i.e., methanol dehydrogenation and acetic acid degradation. Oppositely, Ru(II)CP greatly enhanced the photocatalytic activities for 2-propanol oxidation under visible light irradiation.

4.
Dalton Trans ; 44(12): 5577-86, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25698297

RESUMO

With [Ru(II)(bpyMeP)2tpphzPtCl2](2+) (4) a molecular photocatalyst has been synthesized for visible-light-driven H2-evolution. It contains the ligand bpyMeP (4,4'-bis(diethyl-(methylene)-phosphonate)-2,2'-bipyridine) with phosphate ester groups as precursors for the highly potent phosphonate anchoring groups, which can be utilized for immobilization of the catalyst on metal-oxide semiconductor surfaces. The synthesis was optimized with regard to high yields, bpyMeP was fully characterized and a solid-state structure could be obtained. Photophysical studies showed that the photophysical properties and the localization of the excited states are not altered compared to similar Ru-complexes without anchoring group precursors. (4) was even more active in homogenous catalysis experiments than [Ru(II)(tbbpy)2tpphzPtCl2](2+) (6) with tbbpy (4,4'-bis(tbutyl)-2,2'-bipyridine) as peripheral ligands. After hydrolysis (4) was successfully immobilized on NiO, suggesting that an application in photoelectrosynthesis cells is feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA