Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Immunol ; 15: 1388769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726003

RESUMO

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Assuntos
Vesículas Extracelulares , Glioblastoma , MicroRNAs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Organoides/imunologia , MicroRNAs/genética , Microambiente Tumoral/imunologia , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos
2.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730671

RESUMO

Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.

3.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256041

RESUMO

The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria's involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD's pathogenesis. This study focused on cellular and mitochondrial (dys)function in two atypical cases: an antidepressant non-responding MDD patient ("Non-R") and another with an unexplained mitochondrial disorder ("Mito"). Skin biopsies from these patients and controls were used to generate various cell types, including astrocytes and neurons, and cellular and mitochondrial functions were analyzed. Similarities were observed between the Mito patient and a broader MDD cohort, including decreased respiration and mitochondrial function. Conversely, the Non-R patient exhibited increased respiratory rates, mitochondrial calcium, and resting membrane potential. In conclusion, the Non-R patient's data offered a new perspective on MDD, suggesting a detrimental imbalance in mitochondrial and cellular processes, rather than simply reduced functions. Meanwhile, the Mito patient's data revealed the extensive effects of mitochondrial dysfunctions on cellular functions, potentially highlighting new MDD-associated impairments. Together, these case studies enhance our comprehension of MDD.


Assuntos
Caricaceae , Transtorno Depressivo Maior , Humanos , Astrócitos , Depressão , Mitocôndrias , Neurônios , Fibroblastos , Mitomicina
4.
Acta Neuropathol Commun ; 11(1): 147, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697350

RESUMO

TSPO is a promising novel tracer target for positron-emission tomography (PET) imaging of brain tumors. However, due to the heterogeneity of cell populations that contribute to the TSPO-PET signal, imaging interpretation may be challenging. We therefore evaluated TSPO enrichment/expression in connection with its underlying histopathological and molecular features in gliomas. We analyzed TSPO expression and its regulatory mechanisms in large in silico datasets and by performing direct bisulfite sequencing of the TSPO promotor. In glioblastoma tissue samples of our TSPO-PET imaging study cohort, we dissected the association of TSPO tracer enrichment and protein labeling with the expression of cell lineage markers by immunohistochemistry and fluorescence multiplex stains. Furthermore, we identified relevant TSPO-associated signaling pathways by RNA sequencing.We found that TSPO expression is associated with prognostically unfavorable glioma phenotypes and that TSPO promotor hypermethylation is linked to IDH mutation. Careful histological analysis revealed that TSPO immunohistochemistry correlates with the TSPO-PET signal and that TSPO is expressed by diverse cell populations. While tumor core areas are the major contributor to the overall TSPO signal, TSPO signals in the tumor rim are mainly driven by CD68-positive microglia/macrophages. Molecularly, high TSPO expression marks prognostically unfavorable glioblastoma cell subpopulations characterized by an enrichment of mesenchymal gene sets and higher amounts of tumor-associated macrophages.In conclusion, our study improves the understanding of TSPO as an imaging marker in gliomas by unveiling IDH-dependent differences in TSPO expression/regulation, regional heterogeneity of the TSPO PET signal and functional implications of TSPO in terms of tumor immune cell interactions.


Assuntos
Glioblastoma , Glioma , Células-Tronco Mesenquimais , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Macrófagos Associados a Tumor , Macrófagos , Receptores de GABA/genética
5.
J Transl Med ; 21(1): 444, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415222

RESUMO

BACKGROUND: Animal models representing different molecular subtypes of glioblastoma multiforme (GBM) is desired for developing new therapies. SVV-001 is an oncolytic virus selectively targeting cancer cells. It's capacity of passing through the blood brain barrier makes is an attractive novel approach for GBM. MATERIALS AND METHODS: 23 patient tumor samples were implanted into the brains of NOD/SCID mice (1 × 105 cells/mouse). Tumor histology, gene expression (RNAseq), and growth rate of the developed patient-derived orthotopic xenograft (PDOX) models were compared with the originating patient tumors during serial subtransplantations. Anti-tumor activities of SVV-001 were examined in vivo; and therapeutic efficacy validated in vivo via single i.v. injection (1 × 1011 viral particle) with or without fractionated (2 Gy/day x 5 days) radiation followed by analysis of animal survival times, viral infection, and DNA damage. RESULTS: PDOX formation was confirmed in 17/23 (73.9%) GBMs while maintaining key histopathological features and diffuse invasion of the patient tumors. Using differentially expressed genes, we subclassified PDOX models into proneural, classic and mesenchymal groups. Animal survival times were inversely correlated with the implanted tumor cells. SVV-001 was active in vitro by killing primary monolayer culture (4/13 models), 3D neurospheres (7/13 models) and glioma stem cells. In 2/2 models, SVV-001 infected PDOX cells in vivo without harming normal brain cells and significantly prolonged survival times in 2/2 models. When combined with radiation, SVV-001 enhanced DNA damages and further prolonged animal survival times. CONCLUSION: A panel of 17 clinically relevant and molecularly annotated PDOX modes of GBM is developed, and SVV-001 exhibited strong anti-tumor activities in vitro and in vivo.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Camundongos , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais de Doenças , Linhagem Celular Tumoral
6.
Cells ; 12(14)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508520

RESUMO

Conventional 2D cultures are commonly used in cancer research though they come with limitations such as the lack of microenvironment or reduced cell heterogeneity. In this study, we investigated in what respect a scaffold-based (Matrigel™) 3D culture technique can ameliorate the limitations of 2D cultures. NGS-based bulk and single-cell sequencing of matched pairs of 2D and 3D models showed an altered transcription of key immune regulatory genes in around 36% of 3D models, indicating the reoccurrence of an immune suppressive phenotype. Changes included the presentation of different HLA surface molecules as well as cellular stressors. We also investigated the 3D tumor organoids in a co-culture setting with tumor-infiltrating lymphocytes (TILs). Of note, lymphocyte-mediated cell killing appeared less effective in clearing 3D models than their 2D counterparts. IFN-γ release, as well as live cell staining and proliferation analysis, pointed toward an elevated resistance of 3D models. In conclusion, we found that the scaffold-based (Matrigel™) 3D culture technique affects the transcriptional profile in a subset of GBM models. Thus, these models allow for depicting clinically relevant aspects of tumor-immune interaction, with the potential to explore immunotherapeutic approaches in an easily accessible in vitro system.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Imunossupressores/uso terapêutico , Fenótipo , Microambiente Tumoral
7.
Microlife ; 4: uqad027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305433

RESUMO

Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3',5'- and 2',3'-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3'-3'-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3'-3'-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea.

8.
Acta Neuropathol Commun ; 11(1): 75, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158962

RESUMO

Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Fator de Necrose Tumoral alfa , Encéfalo , Linfócitos T CD8-Positivos , Neoplasias Encefálicas/genética , Receptores de GABA/genética
10.
Nat Commun ; 13(1): 6689, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335125

RESUMO

Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.


Assuntos
Ependimoma , Simportadores , Humanos , Criança , Ependimoma/genética , Ependimoma/patologia , Metilação de DNA/genética , Recidiva , Epigênese Genética , Simportadores/genética
11.
Transl Oncol ; 18: 101368, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182954

RESUMO

Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.

12.
Lab Invest ; 102(2): 185-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802040

RESUMO

Brain tumors are the leading cause of cancer-related death in children. Tazemetostat is an FDA-approved enhancer of zeste homolog (EZH2) inhibitor. To determine its role in difficult-to-treat pediatric brain tumors, we examined EZH2 levels in a panel of 22 PDOX models and confirmed EZH2 mRNA over-expression in 9 GBM (34.6 ± 12.7-fold) and 11 medulloblastoma models (6.2 ± 1.7 in group 3, 6.0 ± 2.4 in group 4) accompanied by elevated H3K27me3 expression. Therapeutic efficacy was evaluated in 4 models (1 GBM, 2 medulloblastomas and 1 ATRT) via systematically administered tazemetostat (250 and 400 mg/kg, gavaged, twice daily) alone and in combination with cisplatin (5 mg/kg, i.p., twice) and/or radiation (2 Gy/day × 5 days). Compared with the untreated controls, tazemetostat significantly (Pcorrected < 0.05) prolonged survival times in IC-L1115ATRT (101% at 400 mg/kg) and IC-2305GBM (32% at 250 mg/kg, 45% at 400 mg/kg) in a dose-dependent manner. The addition of tazemetostat with radiation was evaluated in 3 models, with only one [IC-1078MB (group 4)] showing a substantial, though not statistically significant, prolongation in survival compared to radiation treatment alone. Combining tazemetostat (250 mg/kg) with cisplatin was not superior to cisplatin alone in any model. Analysis of in vivo drug resistance detected predominance of EZH2-negative cells in the remnant PDOX tumors accompanied by decreased H3K27me2 and H3K27me3 expressions. These data supported the use of tazemetostat in a subset of pediatric brain tumors and suggests that EZH2-negative tumor cells may have caused therapy resistance and should be prioritized for the search of new therapeutic targets.


Assuntos
Neoplasias Encefálicas/terapia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adolescente , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Quimiorradioterapia , Criança , Cisplatino/administração & dosagem , Terapia Combinada/métodos , Avaliação Pré-Clínica de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/administração & dosagem , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Lactente , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Piridonas/administração & dosagem , Piridonas/farmacologia , Dosagem Radioterapêutica
13.
Front Microbiol ; 12: 779012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880846

RESUMO

Research on nucleotide-based second messengers began in 1956 with the discovery of cyclic adenosine monophosphate (3',5'-cAMP) by Earl Wilbur Sutherland and his co-workers. Since then, a broad variety of different signaling molecules composed of nucleotides has been discovered. These molecules fulfill crucial tasks in the context of intracellular signal transduction. The vast majority of the currently available knowledge about nucleotide-based second messengers originates from model organisms belonging either to the domain of eukaryotes or to the domain of bacteria, while the archaeal domain is significantly underrepresented in the field of nucleotide-based second messenger research. For several well-stablished eukaryotic and/or bacterial nucleotide-based second messengers, it is currently not clear whether these signaling molecules are present in archaea. In order to shed some light on this issue, this study analyzed cell extracts of two major archaeal model organisms, the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius, using a modern mass spectrometry method to detect a broad variety of currently known nucleotide-based second messengers. The nucleotides 3',5'-cAMP, cyclic guanosine monophosphate (3',5'-cGMP), 5'-phosphoadenylyl-3',5'-adenosine (5'-pApA), diadenosine tetraphosphate (Ap4A) as well as the 2',3'-cyclic isomers of all four RNA building blocks (2',3'-cNMPs) were present in both species. In addition, H. volcanii cell extracts also contain cyclic cytosine monophosphate (3',5'-cCMP), cyclic uridine monophosphate (3',5'-cUMP) and cyclic diadenosine monophosphate (3',5'-c-di-AMP). The widely distributed bacterial second messengers cyclic diguanosine monophosphate (3',5'-c-di-GMP) and guanosine (penta-)/tetraphosphate [(p)ppGpp] could not be detected. In summary, this study gives a comprehensive overview on the presence of a large set of currently established or putative nucleotide-based second messengers in an eury- and a crenarchaeal model organism.

14.
Adv Sci (Weinh) ; 8(23): e2101923, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719887

RESUMO

Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Dissecação , Glioblastoma/cirurgia , Humanos , Camundongos
16.
Proc Natl Acad Sci U S A ; 117(43): 26766-26772, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051299

RESUMO

Archaea swim using the archaellum (archaeal flagellum), a reversible rotary motor consisting of a torque-generating motor and a helical filament, which acts as a propeller. Unlike the bacterial flagellar motor (BFM), ATP (adenosine-5'-triphosphate) hydrolysis probably drives both motor rotation and filamentous assembly in the archaellum. However, direct evidence is still lacking due to the lack of a versatile model system. Here, we present a membrane-permeabilized ghost system that enables the manipulation of intracellular contents, analogous to the triton model in eukaryotic flagella and gliding Mycoplasma We observed high nucleotide selectivity for ATP driving motor rotation, negative cooperativity in ATP hydrolysis, and the energetic requirement for at least 12 ATP molecules to be hydrolyzed per revolution of the motor. The response regulator CheY increased motor switching from counterclockwise (CCW) to clockwise (CW) rotation. Finally, we constructed the torque-speed curve at various [ATP]s and discuss rotary models in which the archaellum has characteristics of both the BFM and F1-ATPase. Because archaea share similar cell division and chemotaxis machinery with other domains of life, our ghost model will be an important tool for the exploration of the universality, diversity, and evolution of biomolecular machinery.


Assuntos
Membrana Celular , Quimiotaxia/fisiologia , Haloferax volcanii , Modelos Biológicos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Flagelos/química , Flagelos/metabolismo , Haloferax volcanii/citologia , Haloferax volcanii/metabolismo , Cinética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo
17.
Cancer Lett ; 493: 197-206, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32891713

RESUMO

Brain tumor is the leading cause of cancer related death in children. Clinically relevant animals are critical for new therapy development. To address the potential impact of animal gender on tumorigenicity rate, xenograft growth and in vivo drug responses, we retrospectively analyzed 99 of our established patient derived orthotopic xenograft mouse models (orthotopic PDX or PDOX). From 27 patient tumors, including 5 glioblastomas (GBMs), 11 medulloblastomas (MBs), 4 ependymomas (EPNs), 4 atypical teratoid/rhabdoid tumors (ATRTs) and 3 diffuse intrinsic pontine gliomas (DIPGs), that were directly implanted into matching locations in the brains of approximately equal numbers of male and female animals (n = 310) in age-matched (within 2-week age-difference) SCID mice, the tumor formation rate was 50.6 ± 21.5% in male and 52.7 ± 23.5% in female mice with animal survival times of 192.6 ± 31.7 days in male and 173.9 ± 34.5 days in female mice (P = 0.46) regardless of pathological diagnosis. Once established, PDOX tumors were serially subtransplanted for up to VII passage. Analysis of 1,595 mice from 59 PDOX models (18 GBMs, 18 MBs, 5 ATRTs, 6 EPNs, 7 DIPGs and 5 PENTs) during passage II and VII revealed similar tumor take rates of the 6 different tumor types between male (85.4 ± 15.5%) and female mice (84.7 ± 15.2%) (P = 0.74), and animal survival times were 96.7 ± 23.3 days in male mice and 99.7 ± 20 days in female (P = 0.25). A total of 284 mice from 7 GBM, 2 MB, 1 ATRT, 1 EPN, 2 DIPG and 1 PNET were treated with a series of standard and investigational drugs/compounds. The overall survival times were 106.9 ± 25.7 days in male mice, and 110.9 ± 31.8 days in female mice (P = 0.41), similar results were observed when different types/models were analyzed separately. In conclusion, our data demonstrated that the gender of SCID mice did not have a major impact on animal model development nor drug responses in vivo, and SCID mice of both genders are appropriate for use.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Técnicas de Cultura de Células/métodos , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/classificação , Criança , Feminino , Humanos , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Modelagem Computacional Específica para o Paciente , Inoculações Seriadas , Análise de Sobrevida , Células Tumorais Cultivadas
18.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517016

RESUMO

BACKGROUND: Meningiomas constitute one-third of all primary brain tumors. Although typically benign, about 20% of these tumors recur despite surgery and radiation, and may ultimately prove fatal. There are currently no effective chemotherapies for meningioma. We, therefore, set out to develop patient-derived orthotopic xenograft (PDOX) mouse models of human meningioma using tumor. METHOD: Of nine patients, four had World Health Organization (WHO) grade I tumors, five had WHO grade II tumors, and in this second group two patients also had recurrent (WHO grade III) meningioma. We also classified the tumors according to our recently developed molecular classification system (Types A, B, and C, with C being the most aggressive). We transplanted all 11 surgical samples into the skull base of immunodeficient (SCID) mice. Only the primary and recurrent tumor cells from one patient-both molecular Type C, despite being WHO grades II and III, respectively-led to the formation of meningioma in the resulting mouse models. We characterized the xenografts by histopathology and RNA-seq and compared them with the original tumors. We performed an in vitro drug screen using 60 anti-cancer drugs followed by in vivo validation. RESULTS: The PDOX models established from the primary and recurrent tumors from patient K29 (K29P-PDOX and K29R-PDOX, respectively) replicated the histopathology and key gene expression profiles of the original samples. Although these xenografts could not be subtransplanted, the cryopreserved primary tumor cells were able to reliably generate PDOX tumors. Drug screening in K29P and K29R tumor cell lines revealed eight compounds that were active on both tumors, including three histone deacetylase (HDAC) inhibitors. We tested the HDAC inhibitor Panobinostat in K29R-PDOX mice, and it significantly prolonged mouse survival (p < 0.05) by inducing histone H3 acetylation and apoptosis. CONCLUSION: Meningiomas are not very amenable to PDOX modeling, for reasons that remain unclear. Yet at least some of the most malignant tumors can be modeled, and cryopreserved primary tumor cells can create large panels of tumors that can be used for preclinical drug testing.

19.
Cell Rep ; 29(6): 1675-1689.e9, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693904

RESUMO

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Neurofibromina 1/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Neoplasias do Sistema Nervoso Central/metabolismo , Criança , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Camundongos , Mutação , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recidiva , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
20.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064826

RESUMO

Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.IMPORTANCE Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea.


Assuntos
Proteínas Arqueais/química , Polaridade Celular , Quimiotaxia , Haloferax volcanii/fisiologia , Citoplasma/química , Flagelos/fisiologia , Haloferax volcanii/ultraestrutura , Microscopia Eletrônica , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...