Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400250, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809037

RESUMO

Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic  d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.

2.
Arch Pharm (Weinheim) ; 356(4): e2200518, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36480352

RESUMO

Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Ligantes , Proteínas não Estruturais Virais , Conformação Proteica , Relação Estrutura-Atividade , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Serina Endopeptidases/farmacologia , Termodinâmica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
3.
ChemMedChem ; 18(3): e202200336, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325810

RESUMO

The Zika virus (ZIKV) remains a potential threat to the public health due to the lack of both an approved vaccination or a specific treatment. In this work, a series of peptidic inhibitors of the ZIKV protease with boroleucine as P1 residue was synthesized. The highest affinities with Ki values down to 8 nM were observed for compounds with basic residues in both P2 and P3 position and at the N-terminus. The low potency of reference compounds containing leucine, leucine-amide or isopentylamide as P1 residue suggested a covalent binding mode of the boroleucine-derived inhibitors. This was finally proven by crystal structure determination of the most potent inhibitor from this series in complex with the ZIKV protease.


Assuntos
Antivirais , Inibidores de Proteases , Infecção por Zika virus , Zika virus , Humanos , Antivirais/farmacologia , Antivirais/química , Leucina/química , Leucina/farmacologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Zika virus/efeitos dos fármacos , Zika virus/metabolismo , Infecção por Zika virus/metabolismo
4.
J Med Chem ; 65(9): 6555-6572, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35475620

RESUMO

Zika virus (ZIKV) is a human pathogenic arbovirus. So far, neither a specific treatment nor a vaccination against ZIKV infections has been approved. Starting from our previously described lead structure, a series of 29 new macrocyclic inhibitors of the Zika virus protease containing different linker motifs have been synthesized. By selecting hydrophobic d-amino acids as part of the linker, numerous inhibitors with Ki values < 5 nM were obtained. For 12 inhibitors, crystal structures in complex with the ZIKV protease up to 1.30 Å resolution were determined, which contribute to the understanding of the observed structure-activity relationship (SAR). In immunofluorescence assays, an antiviral effect was observed for compound 26 containing a d-homocyclohexylalanine residue in its linker segment. Due to its excellent selectivity profile and low cytotoxicity, this inhibitor scaffold could be a suitable starting point for the development of peptidic drugs against the Zika virus and related flaviviruses.


Assuntos
Infecção por Zika virus , Zika virus , Antivirais/química , Antivirais/farmacologia , Humanos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Infecção por Zika virus/tratamento farmacológico
5.
ChemMedChem ; 15(15): 1439-1452, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501637

RESUMO

A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.


Assuntos
Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...